How WebXR Will Make Your Company Successful
WebXR Examples In Business That Will Make Your Company More Successful

Companies can increase their income and the number of new customers and sales. And they can do it with established proper communication with customers, and customers trust the company. 

Modern technologies play a crucial role in strategy formation. If online sales entered our lives a long time ago and become a common thing, XR technologies are just slowly integrating into routine. But extended reality already sparkles interest in both customers and companies. WebXR is one of them. It allows using all the benefits of virtual and augmented reality through web browsers. 

“When I was starting out, there weren’t a lot of people in the field. All of the cool kids in XR were telling me that the browser was dead,” event host Samantha Mathews said in her opening remarks. “But the web has a magical way of closing the gap between physical and virtual experiences … to me, the 3D web solves the problem of how flat the internet is”, said Samantha Mathews, CEO and CTO of LOCI.

In our new article, you will discover how WebXR is capable of improving your business and encouraging your customers to use your services. Successful use cases added.

What is WebXR

WebXR is a Web application programming interface that allows browsers to support virtual and augmented reality on a web page, with no requirement to download a native app. WebXR provides customers with access to immersive content regardless of devices they use: a smartphone, VR headset, PC, tablet, etc.

Virtual reality

VR in browsers is most often used for online games and virtual excursions. The web game Vivid, where VR headset user lights fireworks with sight is one of the WebXR VR examples. 

Augmented reality

Augmented reality in WebXR uses images, QR codes, and physical objects as markers that activate AR and superimpose digital objects in the real world. WebAR also has the possibility to track face mimics and body movement which makes AR content more realistic. WebAR is constantly used for designing virtual try-on and makeup. 

Here, you can read more about WebXR. 

WebXR Advantages For Business

First of all, WebXR offers customers a new interesting, and immersive solution to see items in the way they would look in reality. Thus, digital technologies can make shopping more convenient and personalized. 

According to RetailDive, 71% of zoomers want their shopping experience to be better personalized, plus 83% of them want their shopping to be more entertaining. 

Read more about other WebXR advantages here. 

WebXR Examples In Business

WebXR is a convenient format to design interactive advertisements and virtual try-on for digital versions of items before purchasing.

Useful WebAR Item Packages

WebAR packages is one of the digital solutions to facilitate product choice. These item packages offer customers some additional useful functions, including visualization of the food product ingredients, for example. WebAR packages can contain visuals of step-by-step recipes, some interesting facts about the product, entertaining elements, etc. 

Using item packages like this, you can demonstrate a brand’s positive side, because a company with WebAR packaging creates additional value for customers, both useful and entertaining.

According to Salsify, 46% of customers said they would pay more to trusted brands

For example, Asda Wagyu Steaks developed WebAR packages for ready-made steaks. Every package contains a QR code that activates AR demonstration of how and on what recipe a steak was cooked. 

WebXR Content For Stores

Gamified immersive experiences can draw customers’ attention to your products and form positive associations. Web advertisements like this are effective if you demonstrate them right before your product was purchased.

According to statistics, brand recognition is increased by 70% when they use augmented reality to encourage their customers. 

For example, Kinder developed a WebAR experience for children in supermarkets. To activate the experience, you can find a QR code flyer on store shelves. After you scan the code on a smartphone, the virtual portal to Africa with animals opens. This experience has entertaining and educating functions because a child learns new facts about every African animal.

Virtual Try-On For Fashions

Virtual try-on is another technology that is already used in retail. It gives a customer the possibility to try on an item’s digital version before buying, thus increasing the number of purchases and reducing the number of returns. According to Shopify, the number of returns was reduced by 40% after the AR try-on implementation. 

Moreover, virtual try-on gives clients the possibility to customize an item and show how it would look in the physical world. According to ThreeKit, 40% of customers said they were ready to pay more for an item with the possibility to customize it in AR. 

Qualium Systems has its own AR Glasses Fitting App, which we also transferred to WebXR. More information about the app is available here.

Virtual Makeup in WebXR

Cosmetics testing with modern technologies provides a better understanding of what lipstick or eyeshadow color fits customers most during online shopping. So, more than 44% of beauty and health purchases in America were made through the web.

Cosmetics brand Perfect Corp. developed its own virtual makeup,  where you can try on digital lipstick, foundations, eyeshadow, and other decorative cosmetics items, using a web camera. 

A year ago, in the midst of the COVID-19 pandemic, the company developed virtual makeup try-on right in their stores, where clients could test cosmetics with no need to take their masks off. That’s a bright example of how brands can adapt to the surrounding restrictions.

In one of our previous articles about extended reality in retail, we wrote about virtual try-on and makeup.  

WebXR Furniture Testing

Choosing furniture and home decor for a real interior with digital immersive technologies prevents the purchase of physical items that didn’t suit a customer because of the wrong size or color. 

According to David Sobie, Happy Returns co-founder and CEO, 15% to 40% of purchases came from customers who bought items online. 

Mazing XR developed a WebAR app that allows placing digital furniture and home decor right into the physical interior.

How WebXR Facilitates Food Ordering

WebXR also found its place in restaurants and food delivery. Due to the fact that AR projections show the dish and its ingredients before ordering, customer service in restaurants gets improved, because clients have a clearer understanding of the food they order. 

Some WebAR apps also contain the dish customization function. That means a client can see how, for example, a burger would look like without sauce or greenery.

Cavalli Club Restaurant & Lounge developed an AR menu that allows customers to see how a chosen dish will look like on their plates. They can also zoom in on a digital image to see more details of the order.

In our article about AR tourism, you can read about how augmented reality improves restaurant work

 

Now you found out more about using WebXR in different business fields, including retail and advertisement. This technology is just gaining popularity in business, but it already offers a personalized and entertaining shopping experience. Interactive advertisements right in a store can draw more customers’ attention to your product. And online shopping can be facilitated with technologies like virtual try-on, virtual makeup, AR projections of furniture and dishes. 

Latest Articles

June 2, 2025
Extended Reality in Industry 4.0: Transforming Industrial Processes

Understanding XR in Industry 4.0 Industry 4.0 marks a turning point in making industry systems smarter and more interconnected: it integrates digital and physical technologies like IoT, automation, and AI, into them. And you’ve probably heard about Extended Reality (XR), the umbrella for Virtual Reality, Augmented Reality, and Mixed Reality. It isn’t an add-on. XR is one of the primary technologies making the industry system change possible. XR has made a huge splash in Industry 4.0, and recent research shows how impactful it has become. For example, a 2023 study by Gattullo et al. points out that AR and VR are becoming a must-have in industrial settings. It makes sense — they improve productivity and enhance human-machine interactions (Gattullo et al., 2023). Meanwhile, research by Azuma et al. (2024) focuses on how XR makes workspaces safer and training more effective in industrial environments. One thing is clear: the integration of XR into Industry 4.0 closes the gap between what we imagine in digital simulations and what actually happens in the real world. Companies use XR to work smarter — it tightens up workflows, streamlines training, and improves safety measures. The uniqueness of XR is in its immersive nature. It allows teams to make better decisions, monitor operations with pinpoint accuracy, and effectively collaborate, even if team members are on opposite sides of the planet. XR Applications in Key Industrial Sectors Manufacturing and Production One of the most significant uses of XR in Industry 4.0 is in manufacturing, where it enhances design, production, and quality control processes. Engineers now utilize digital twins, virtual prototypes, and AR-assisted assembly lines, to catch possible defects before production even starts. Research by Mourtzis et al. (2024) shows how effective digital twin models powered by XR are in smart factories: for example, studies reveal that adopting XR-driven digital twins saves design cycle times by up to 40% and greatly speeds up product development. Besides, real-time monitoring with these tools has decreased system downtimes by 25% (Mourtzis et al., 2024). Training and Workforce Development The use of XR in employee training has changed how industrial workers acquire knowledge and grow skills. Hands-on XR-based simulations allow them to practice in realistic settings without any of the risks tied to operating heavy machinery, whereas traditional training methods usually involve lengthy hours, high expenses, and the need to set aside physical equipment, disrupting operations. A study published on ResearchGate titled ‘Immersive Virtual Reality Training in Industrial Settings: Effects on Memory Retention and Learning Outcomes’ offers interesting insights on XR’s use in workforce training. It was carried out by Jan Kubr, Alena Lochmannova, and Petr Horejsi, researchers from the University of West Bohemia in Pilsen, Czech Republic, specializing in industrial engineering and public health. The study focused on fire suppression training to show how different levels of immersion in VR affect training for industrial safety procedures. The findings were astounding. People trained in VR remembered 45% more information compared to those who went through traditional training. VR also led to a 35% jump in task accuracy and cut real-world errors by 50%. On top of that, companies using VR in their training programs noticed that new employees reached full productivity 25% faster. The study uncovered a key insight: while high-immersion VR training improves short-term memory retention and operational efficiency, excessive immersion — for example, using both audio navigation and visual cues at the same time — can overwhelm learners and hurt their ability to absorb information. These results showed how important it is to find the right balance when creating VR training programs to ensure they’re truly effective. XR-based simulations let industrial workers safely engage in realistic and hands-on scenarios without the hazards or costs of operating heavy machinery, changing the way they acquire new skills. Way better than sluggish, costly, and time-consuming traditional training methods that require physical equipment and significant downtime. Maintenance and Remote Assistance XR is also transforming equipment maintenance and troubleshooting. In place of physical manuals, technicians using AR-powered smart glasses can view real-time schematics, follow guided diagnostics, and connect with remote experts, reducing downtime. Recent research by Javier Gonzalez-Argote highlights how significantly AR-assisted maintenance has grown in the automotive industry. The study finds that AR, mostly mediated via portable devices, is widely used in maintenance, evaluation, diagnosis, repair, and inspection processes, improving work performance, productivity, and efficiency. AR-based guidance in product assembly and disassembly has also been found to boost task performance by up to 30%, substantially improving accuracy and lowering human errors. These advancements are streamlining industrial maintenance workflows, reducing downtime and increasing operational efficiency across the board (González-Argote et al., 2024). Industrial IMMERSIVE 2025: Advancing XR in Industry 4.0 At the Industrial IMMERSIVE Week 2025, top industry leaders came together to discuss the latest breakthroughs in XR technology for industrial use. One of the main topics of discussion was XR’s growing impact on workplace safety and immersive training environments. During the event, Kevin O’Donovan, a prominent technology evangelist and co-chair of the Industrial Metaverse & Digital Twin committee at VRARA, interviewed Annie Eaton, a trailblazing XR developer and CEO of Futurus. She shared exciting details about a groundbreaking safety training initiative, saying: “We have created a solution called XR Industrial, which has a collection of safety-themed lessons in VR … anything from hazards identification, like slips, trips, and falls, to pedestrian safety and interaction with mobile work equipment like forklifts or even autonomous vehicles in a manufacturing site.” By letting workers practice handling high-risk scenarios in a risk-free virtual setting, this initiative shows how XR makes workplaces safer. No wonder more companies are beginning to see the value in using such simulations to improve safety across operations and avoid accidents. Rethinking how manufacturing, training, and maintenance are done, extended reality is rapidly becoming necessary for Industry 4.0. The combination of rising academic study and practical experiences, like those shared during Industrial IMMERSIVE 2025, highlights how really strong this technology is. XR will always play a big role in optimizing efficiency, protecting workers, and…

April 29, 2025
Med Tech Standards: Why DICOM is Stuck in the 90s and What Needs to Change

You probably don’t think much about medical scan data. But they’re everywhere. If you’ve got an X-ray or an MRI, your images were almost certainly processed by DICOM (Digital Imaging and Communications in Medicine), the globally accepted standard for storing and sharing medical imaging data like X-rays, MRIs, and CT scans between hospitals, clinics, and research institutions since the late 80s and early 90s. But there’s a problem: while medical technology has made incredible leaps in the last 30 years, DICOM hasn’t kept up. What is DICOM anyway? DICOM still operates in ways that feel more suited to a 1990s environment of local networks and limited computing power. Despite updates, the system doesn’t meet the demands of cloud computing, AI-driven diagnostics, and real-time collaboration. It lacks cloud-native support and rigid file structures, and shows inconsistencies between different manufacturers. If your doctor still hands you a CD with your scan on it in 2025 (!), DICOM is a big part of that story. The DICOM Legacy How DICOM Came to Be When DICOM was developed in the 1980s, the focus was on solving some big problems in medical imaging, and honestly, it did the job brilliantly for its time. The initial idea was to create a universal language for different hardware and software platforms to communicate with each other, sort of like building a shared language for technology. They also had to make sure it was compatible with older devices already in use. At that time, the most practical option was to rely on local networks since cloud-based solutions simply didn’t exist yet. These decisions helped DICOM become the go-to standard, but they also locked it into an outdated framework that’s now tough to update. Why It’s Hard to Change DICOM Medical standards don’t evolve as fast as consumer technology like phones or computers. Changing something like DICOM doesn’t happen overnight. It’s a slow and complicated process muddled by layers of regulatory approvals and opinions from a tangled web or organizations and stakeholders. What’s more, hospitals have decades of patient data tied to these systems, and making big changes that may break compatibility isn’t easy. And to top it all off, device manufacturers have different ways of interpreting and implementing DICOM, so it’s nearly impossible to enforce consistency. The Trouble With Staying Backwards Compatible DICOM’s focus on working perfectly with old systems was smart at the time, but it’s created some long-term problems. Technological advancements have moved on with AI, cloud storage, and tools for real-time diagnostics. They have shown immediately how limited DICOM can be in catching up with these innovations. Also, vendor-specific implementations have created quirks that make devices less compatible with one another than they should be. And don’t even get started on trying to link DICOM with modern healthcare systems like electronic records or telemedicine platforms. It would be like trying to plug a 1980s gadget into a smart technology ecosystem — not impossible, but far from seamless. Why Your CT Scanner and MRI Machine Aren’t Speaking the Same Language Interoperability in medical imaging sounds great in theory — everything just works, no matter the device or manufacturer — however, in practice, things got messy. Some issues sound abstract, but for doctors and hospitals, they mean delays, misinterpretations, and extra burden. So, why don’t devices always play nice? The Problem With “Standards” That Aren’t Very Standard You’d think having a universal standard like DICOM would ensure easy interoperability because everybody follows the same rules. Not exactly. Device manufacturers implement it differently, and this leads to: Private tags. These are proprietary pieces of data that only specific software can understand. If your software doesn’t understand them, you’re out of luck. Missing or vague fields. Some devices leave out crucial metadata or define it differently. File structure issues. Small differences in how data is formatted sometimes make files unreadable. The idea of a universal standard is nice, but the way it’s applied leaves a lot to be desired. Metadata and Tag Interpretation Issues DICOM images contain extensive metadata to describe details like how the patient was positioned during the scan or how the images fit together. But when this metadata isn’t standardized, you end up with metadata and tag interpretation issues. For example, inconsistencies in slice spacing or image order can throw off 3D reconstructions, leaving scans misaligned. As a result, when doctors try to compare scans over time or across different systems, they often have to deal with mismatched or incomplete data. These inconsistencies make what should be straightforward tasks unnecessarily complicated and create challenges for accurate diagnoses and proper patient care. File Structure and Storage Inconsistencies The way images are stored varies so much between devices that it often causes problems. Some scanners save each image slice separately. Others put them together in one file. Then there are slight differences in DICOM implementations that make it difficult to read images on some systems. Compression adds another layer of complexity — it’s not the same across the board. File sizes and levels of quality vary widely. All these mismatches and inconsistencies make everything harder for hospitals and doctors trying to work together. Orientation and Interpretation Issues Medical imaging is incredible, but sometimes working with scans slows things down when time matters most and makes it harder to get accurate insights for patient care. There are several reasons for this. Different Coordinate Systems Sometimes, DICOM permits the use of different coordination systems and causes confusions. For instance, patient-based coordinates relate to the patient’s body, like top-to-bottom (head-to-feet) or side-to-side (left-to-right). Scanner-based coordinates, on the other hand, are based on the imaging device itself. When these systems don’t match up, it creates misalignment issues in multi-modal imaging studies, where scans from different devices need to work together. Slice Ordering Problems Scans like MRIs and CTs are made up of thin cross-sectional images called slices. But not every scanner orders or numbers these slices in the same way. Some slices can be stored from top-to-bottom or bottom-to-top. If the order…

March 24, 2025
VR & MR Headsets: How to Choose the Right One for Your Product

Introduction Virtual and mixed reality headsets are not just cool toys to show off at parties, though they’re definitely good for that. They train surgeons without risking a single patient, build immersive classrooms without ever leaving home, and even help to design something with unparalleled precision. But choosing VR/MR headsets … It’s not as simple as picking what looks sleek or what catches your eye on the shelf. And we get it. The difference between a headset that’s wired, standalone, or capable of merging the real and digital worlds is confusing sometimes. But we’ll break it all down in a way that makes sense. Types of VR Headsets VR and MR headsets have different capabilities. However, choosing the perfect one is less about specs and more about how they fit your needs and what you want to achieve. Here’s the lineup… Wired Headsets Wired headsets like HTC Vive Pro and Oculus Rift S should be connected to a high-performance PC to deliver stunningly detailed visuals and incredibly accurate tracking. Expect razor-sharp visuals that make virtual grass look better than real grass and tracking so on-point, you’d swear it knows what you’re about to do before you do. Wired headsets are best for high-stakes environments like surgical training, designing complex structures, or running realistic simulations for industries like aerospace. However, you’ll need a powerful computer to even get started, and a cable does mean less freedom to move around. Standalone Headsets No strings attached. Literally. Standalone headsets like Oculus Quest Pro, Meta Quest 3, Pico Neo 4, and many more) are lightweight, self-contained, and wireless, so you can jump between work and play with no need for external hardware. They are perfect for on-the-go use, casual gaming, and quick training sessions. From portable training setups to spontaneous VR adventures at home, these headsets are flexible and always ready for action (and by “action”, we mostly mean Zoom calls in VR if we’re being honest). However, standalone headsets may not flex enough for detailed, high-performance applications like ultra-realistic design work or creating highly detailed environments. Mixed Reality (MR) Headsets Mixed reality headsets blur the line between physical and digital worlds. They don’t just whisk you to a virtual reality — they invite the virtual to come hang out in your real one. And this means holograms nested on your desk, live data charts floating in the air, and playing chess with a virtual opponent right at your dining room table. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. The question isn’t just in what these headsets can do. It’s in how they fit into your reality, your goals, and your imagination. Now, the only question left is… which type is best for your needs? Detailed Headset Comparisons It’s time for us to play matchmaker between you and the headsets that align with your goals and vision. No awkward small talk here, just straight-to-the-point profiles of the top contenders. HTC Vive Pro This is your choice if you demand nothing but the best. With a resolution of 2448 x 2448 pixels per eye, it delivers visuals so sharp and detailed that they bring virtual landscapes to life with stunning clarity. HTC Vive Pro comes with base-station tracking that practically reads your mind, and every movement you make in the real world reflects perfectly in the virtual one. But this kind of performance doesn’t come without requirements. Like any overachiever, it’s got high standards and requires some serious backup. You’ll need a PC beefy enough to bench press an Intel Core i7 and an NVIDIA GeForce RTX 2070. High maintenance is also required, but it’s totally worth it. Best for: High-performance use cases like advanced simulations, surgical training, or projects that demand ultra-realistic visuals and tracking accuracy. Meta Quest 3 Unlilke the HTC Vive Pro, the Meta Quest 3 doesn’t require a tethered PV setup cling. This headset glides between VR and MR like a pro. One minute you’re battling in an entirely virtual world, and the next, you’re tossing virtual sticky notes onto your very real fridge. Meta Quest 3 doesn’t match the ultra-high resolution of the Vive Pro, but its display resolution reaches 2064 x 2208 pixels per eye — and this means sharp and clear visuals that are more than adequate for training sessions, casual games, and other applications. Best for: Portable classrooms, mobile training sessions, or casual VR activities. Magic Leap 2 The Magic Leap 2 sets itself apart not with flashy design, but with seamless hand and eye tracking that precisely follow your movements and the headset that feels like it knows you. This headset is the one you want when you’re blending digital overlays with your real-life interactions. 2048 x 1080 pixels per eye and the 70 degrees diagonal field of view come with a price tag that’s way loftier than its competitors. But remember that visionaries always play on their terms Best for: Interactive lessons, augmented reality showstoppers, or drawing attention at industry conventions with show-stopping demos. HTC Vive XR Elite The HTC Vive XR Elite doesn’t confine itself to one category. It’s built for users who expect both performance and portability in one device. 1920 x 1920 resolution per eye doesn’t make it quite as flashy as the overachiever above, but it makes up for it with adaptability. This headset switches from wired to wireless within moments and keeps up with how you want to work or create. Best for: Flexible setups, easily transitioning between wired and wireless experiences, and managing dynamic workflows. Oculus Quest Pro The Oculus Quest Pro is a devices that lets its capabilities speak for themselves. Its smooth and reliable performance,…



Let's discuss your ideas

Contact us