Virtual Tours of National Parks. Discovering Nature’s Beauty through AR and VR

In this article, we will explore the impact of augmented and virtual reality on national parks, specifically how they are changing our experience of visiting natural landscapes. We focus on free virtual tours that allow us to see the beauty of national parks without leaving home. We will also reveal the main advantages of augmented reality, which enrich the visiting of real parks with the help of digital content with interesting information.

In particular, we will share our experience of creating tourist VR excursions using the example of the Carpathian Mountains Virtual Tour and Medieval Fortress Virtual Journey. We will also explore other famous AR/VR use cases, e.g., the State Parks of California, giving us a unique perspective on our national parks’ historical and ecological significance.

Discovering Benefits of AR and VR in National Parks

Virtual and augmented reality offer such benefits to national parks as

  • Getting informative content on the spot. When visiting parks and other historical places, visitors usually don’t know about this or that type of plant or even in which part of the park they are. With the help of an AR application, a tourist can simply point the screen at a particular plant and get additional information about it.

Read also: The Ways AR Redefines Modern Tourism 

Speaking about orientation in place, AR navigation will come in handy here, which guides the tourist in the right direction with the help of digital pointers.

Read also: From Outdoors to Indoors: AR Navigation as Game-Changer

  • Visiting places that aren’t accessible for you. During the COVID-19 pandemic and home isolation, virtual tours of museums or national parks were one of the popular alternatives to visiting real tourist locations. Even though the pandemic began to gradually fade away, virtual tours continue to be relevant. By visiting free tours on museums or park websites, an Internet user saves money on the ticket, car fuel, and transportation. Especially when a person does not always have an opportunity to get to the place where, perhaps, he would like to go. “The advantage is that you can go somewhere and experience the same feelings without leaving your home. Virtual guides have musical accompaniment, the effect of presence thus allows you to immerse yourself in the environment. This is all about VR. Plus, not all of us can go to Papua New Guinea or somewhere else to look at bamboo, baobabs, etc. Or go on safari. Therefore, these are opportunities to visit somewhere without spending additional funds,” said Oleksandr Ivanov, project manager of Qualium Systems.

  • Drawing attention to ecology, rare plants and animals. As you know, there are more than 35,000 species of endangered plants and animals in the world, 99% of which are endangered due to human activities. With virtual and augmented reality for parks that are the home for these species of animals, it becomes possible to tell about these endangered species to a wider audience. As of July 2023, there are almost 7 billion people in the world who have smartphones, which is more than 86% of the entire population of the planet. 

Qualium System’s Virtual Tours of National Parks

Qualium Systems has great experience in developing VR excursions. Carpathian Mountains Virtual Tour is an application for Meta Quest, created as part of The World Of Carpathian Rosettes — Activities For Preserving The Cultural Uniqueness Of The Carpathians project by the Euroregion Carpathians — Ukraine association with the financial support of the European Union. The main goal of this program is to preserve the cultural uniqueness of the Ukrainian Carpathians.

The main challenge in the development of this virtual tour was to introduce more than 260 photo and video materials into the program while providing the VR headset users with such an experience as if they were visiting a real museum.

In this application, a tourist can explore virtual settlements in the Carpathians, both with the effect of presence in these settlements and from a bird’s eye view. There is also the option of a “bicycle trip” available. A tourist can “ride” along the Franko route, which is a path in the forest, famous Ukrainian poet Ivan Franko liked to travel.

Also, our developers are working on another virtual tour of the medieval fortress in the Ukrainian town of Tustan. Unlike the previous tour, a VR headset user will not only be able to see the digital environment with exhibits but also interact with them.

“With the help of VR, you can not only be there, in that museum, but also take the artifacts, examine, bring them up to your forehead. You could see everything down to every crack,” said Oleksandr Ivanov, project manager of Qualium Systems.

Unveiling Diverse Use Cases of AR and VR in National Parks

Our company pays attention to virtual tours and giving people the opportunity to see places that are inaccessible to them due to various circumstances. We constantly monitor the latest trends in the modern IT industry, and there are other famous examples that will be mentioned later.

Virtual Reality Adventures in California State Parks

The California Department of Parks and Recreation has introduced virtual and augmented reality tours for 9 parks located in the state of California. In the Virtual Adventurer mobile app, tourists get a guided tour that tells the story of each of the parks, including Colonel Allensworth State Historic Park, Montana de Oro State Park, Old Town San Diego Historic Park, and others. Moreover, futuristic holograms and 3D reconstructions are also involved.

“The app also supports and enhances the department’s Reexamining Our Past Initiative by developing content for parks that tells a more complete, accurate, and inclusive history of people and places,” said California State Parks Director Armando Quintero. 

Great Barrier Reef’s Virtual Realms

As mentioned above, virtual excursions allow gadget users to get to places they would be unlikely to get to in real life. The same is true for the underwater attractions. Not every tourist wants to spend their time and money not only to reach, for example, Australia but also to train diving skills and buy a wetsuit with an oxygen cylinder.

In this case, one can explore the Great Barrier Reef in the 180 video format without the need to dive into the real ocean. This two-minute experience was created by ECOVR for Meta Quest. The main purpose of the virtual coral reef excursion is meditation and relaxation.

Free Virtual Tour to Ambrym Volcano

Short VR tours also come in handy when a user wants to see natural places that contain potential danger while sitting on their cozy couches. For example, you can explore a virtual tour in the 360 video format from Red Bull, which tells about a scientific expedition to an active volcano on the island of Ambrym, the Republic of Vanuatu, the South Pacific Ocean. The video is also accompanied by an audio narration that tells about the features of the Benbow volcano and how dangerous this expedition is.

 

Thanks to virtual reality tours, we can now discover the wonders of the pristine landscapes, whether we are physically present or miles away. Free VR tours of natural national monuments can deepen our understanding of the importance of preserving rare and endangered species of plants and animals. VR excursions also provide more knowledge and a clearer understanding of the ecological status and historical significance of national parks.

As augmented and virtual reality continue to evolve, their potential impact on strengthening the bond between humanity and nature holds promise for the future, inspiring us to become better stewards of our beloved national parks and the environment as a whole.

Image: Freepik

Latest Articles

June 27, 2025
Methodology of VR/MR/AR and AI Project Estimation

Estimation of IT projects based on VR, XR, MR, or AI requires both a deep technical understanding of advanced technologies and the ability to predict future market tendencies, potential risks, and opportunities. In this document, we aim to thoroughly examine estimation methodologies that allow for the most accurate prediction of project results in such innovative fields as VR/MR/AR and AI by describing unique approaches and strategies developed by Qualium Systems. We strive to cover existing estimation techniques used at our company and delve into the strategies and approaches that ensure high efficiency and accuracy of the estimation process. While focusing on different estimation types, we analyze the choice of methods and alternative approaches available. Due attention is paid to risk assessment being the key element of a successful IT project implementation, especially in such innovative fields as VR/MR/AR and AI. Moreover, the last chapter covers the demo of a project of ours, the Chemistry education app. We will show how the given approaches practically affect the final project estimation. Read

June 27, 2025
What Are Spatial Anchors and Why They Matter

Breaking Down Spatial Anchors in AR/MR Augmented Reality (AR) and Mixed Reality (MR) depend on accurate understanding of the physical environment to create realistic experiences, and they hit this target with the concept of spatial anchors. These anchors act like markers, either geometric or based on features, that help virtual objects stay in the same spot in the real world — even when users move around. Sounds simple, but the way spatial anchors are implemented varies a lot depending on the platform; for example, Apple’s ARKit, Google’s ARCore, and Microsoft’s Azure Spatial Anchors (ASA) all approach them differently. If you want to know how these anchors are used in practical scenarios or what challenges developers often face when working with them, this article dives into these insights too. What Are Spatial Anchors and Why They Matter A spatial anchor is like a marker in the real world, tied to a specific point or group of features. Once you create one, it allows for some important capabilities: Persistence. Virtual objects stay exactly where you placed them in the real-world, even if you close and restart the app. Multi-user synchronization. Multiple devices can share the same anchor, so everyone sees virtual objects aligned to the same physical space. Cross-session continuity. You can leave a space and come back later, and all the virtual elements will still be in the right place. In AR/MR, your device builds a point cloud or feature map by using the camera and built-in sensors like the IMU (inertial measurement unit). Spatial anchors are then tied to those features, and without them, virtual objects can drift or float around as you move, shattering the sense of immersion. Technical Mechanics of Spatial Anchors At a high level, creating and using spatial anchors involves a series of steps: Feature Detection & Mapping To start, the device needs to understand its surroundings: it scans the environment to identify stable visual features (e.g., corners, edges). Over time, these features are triangulated, forming a sparse map or mesh of the space. This feature map is what the system relies on to anchor virtual objects. Anchor Creation Next, anchors are placed at specific 3D locations in the environment in two possible ways: Hit-testing. The system casts a virtual ray from a camera to a user-tapped point, then drops an anchor on the detected surface. Manual placement. Sometimes, developers need precise control, so they manually specify the exact location of an anchor using known coordinates, like ensuring it perfectly fits on the floor or another predefined plane. Persistence & Serialization Anchors aren’t temporary — they can persist, and here’s how systems make that possible: Locally stored anchors. Frameworks save the anchor’s data, like feature descriptors and transforms, in a package called a “world map” or “anchor payload”. Cloud-based anchors. Cloud services like Azure Spatial Anchors (ASA) upload this anchor data to a remote server to let the same anchor be accessed across multiple devices. Synchronization & Restoration When you’re reopening the app or accessing the anchor on a different device, the system uses the saved data to restore the anchor’s location. It compares stored feature descriptors to what the camera sees in real time, and if there’s a good enough match, the system confidently snaps the anchor into position, and your virtual content shows up right where it’s supposed to. However, using spatial anchors isn’t perfect, like using any other technology, and there are some tricky issues to figure out: Low latency. Matching saved data to real-time visuals has to be quick; otherwise, the user experience feels clunky. Robustness in feature-scarce environments. Blank walls or textureless areas don’t give the system much to work with and make tracking tougher. Scale drift. Little errors in the system’s tracking add up over time to big discrepancies. When everything falls into place and the challenges are handled well, spatial anchors make augmented and virtual reality experiences feel seamless and truly real. ARKit’s Spatial Anchors (Apple) Apple’s ARKit, rolled out with iOS 11, brought powerful features to developers working on AR apps, and one of them is spatial anchoring, which allows virtual objects to stay fixed in the real world as if they belong there. To do this, ARKit provides two main APIs that developers rely on to achieve anchor-based persistence. ARAnchor & ARPlaneAnchor The simplest kind of anchor in ARKit is the ARAnchor, which represents a single 3D point in the real-world environment and acts as a kind of “pin” in space that ARKit can track. Building on this, ARPlaneAnchor identifies flat surfaces like tables, floors, and walls, allowing developers to tie virtual objects to these surfaces. ARWorldMap ARWorldMap makes ARKit robust for persistence and acts as a snapshot of the environment being tracked by ARKit. It captures the current session, including all detected anchors and their surrounding feature points, into a compact file. There are a few constraints developers need to keep in mind: World maps are iOS-only, which means they cannot be shared directly with Android. There must be enough overlapping features between the saved environment and the current physical space, and textured structures are especially valuable for this, as they help ARKit identify key points for alignment. Large world maps, especially those with many anchors or detailed environments, can be slow to serialize and deserialize, causing higher application latency when loading or saving. ARKit anchors are ideal for single-user persistence, but sharing AR experiences across multiple devices poses additional issues, and developers often employ custom server logic (uploading ARWorldMap data to a backend), enabling users to download and use the same map. However, this approach comes with caveats: it requires extra development work and doesn’t offer native support for sharing across platforms like iOS and Android. ARCore’s Spatial Anchors (Google) Google’s ARCore is a solid toolkit for building AR apps, and one of its best features is how it handles spatial anchors: Anchors & Hit-Testing ARCore offers two ways to create anchors. You can use Session.createAnchor(Pose) if you already know the anchor’s position, or…

June 2, 2025
Extended Reality in Industry 4.0: Transforming Industrial Processes

Understanding XR in Industry 4.0 Industry 4.0 marks a turning point in making industry systems smarter and more interconnected: it integrates digital and physical technologies like IoT, automation, and AI, into them. And you’ve probably heard about Extended Reality (XR), the umbrella for Virtual Reality, Augmented Reality, and Mixed Reality. It isn’t an add-on. XR is one of the primary technologies making the industry system change possible. XR has made a huge splash in Industry 4.0, and recent research shows how impactful it has become. For example, a 2023 study by Gattullo et al. points out that AR and VR are becoming a must-have in industrial settings. It makes sense — they improve productivity and enhance human-machine interactions (Gattullo et al., 2023). Meanwhile, research by Azuma et al. (2024) focuses on how XR makes workspaces safer and training more effective in industrial environments. One thing is clear: the integration of XR into Industry 4.0 closes the gap between what we imagine in digital simulations and what actually happens in the real world. Companies use XR to work smarter — it tightens up workflows, streamlines training, and improves safety measures. The uniqueness of XR is in its immersive nature. It allows teams to make better decisions, monitor operations with pinpoint accuracy, and effectively collaborate, even if team members are on opposite sides of the planet. XR Applications in Key Industrial Sectors Manufacturing and Production One of the most significant uses of XR in Industry 4.0 is in manufacturing, where it enhances design, production, and quality control processes. Engineers now utilize digital twins, virtual prototypes, and AR-assisted assembly lines, to catch possible defects before production even starts. Research by Mourtzis et al. (2024) shows how effective digital twin models powered by XR are in smart factories: for example, studies reveal that adopting XR-driven digital twins saves design cycle times by up to 40% and greatly speeds up product development. Besides, real-time monitoring with these tools has decreased system downtimes by 25% (Mourtzis et al., 2024). Training and Workforce Development The use of XR in employee training has changed how industrial workers acquire knowledge and grow skills. Hands-on XR-based simulations allow them to practice in realistic settings without any of the risks tied to operating heavy machinery, whereas traditional training methods usually involve lengthy hours, high expenses, and the need to set aside physical equipment, disrupting operations. A study published on ResearchGate titled ‘Immersive Virtual Reality Training in Industrial Settings: Effects on Memory Retention and Learning Outcomes’ offers interesting insights on XR’s use in workforce training. It was carried out by Jan Kubr, Alena Lochmannova, and Petr Horejsi, researchers from the University of West Bohemia in Pilsen, Czech Republic, specializing in industrial engineering and public health. The study focused on fire suppression training to show how different levels of immersion in VR affect training for industrial safety procedures. The findings were astounding. People trained in VR remembered 45% more information compared to those who went through traditional training. VR also led to a 35% jump in task accuracy and cut real-world errors by 50%. On top of that, companies using VR in their training programs noticed that new employees reached full productivity 25% faster. The study uncovered a key insight: while high-immersion VR training improves short-term memory retention and operational efficiency, excessive immersion — for example, using both audio navigation and visual cues at the same time — can overwhelm learners and hurt their ability to absorb information. These results showed how important it is to find the right balance when creating VR training programs to ensure they’re truly effective. XR-based simulations let industrial workers safely engage in realistic and hands-on scenarios without the hazards or costs of operating heavy machinery, changing the way they acquire new skills. Way better than sluggish, costly, and time-consuming traditional training methods that require physical equipment and significant downtime. Maintenance and Remote Assistance XR is also transforming equipment maintenance and troubleshooting. In place of physical manuals, technicians using AR-powered smart glasses can view real-time schematics, follow guided diagnostics, and connect with remote experts, reducing downtime. Recent research by Javier Gonzalez-Argote highlights how significantly AR-assisted maintenance has grown in the automotive industry. The study finds that AR, mostly mediated via portable devices, is widely used in maintenance, evaluation, diagnosis, repair, and inspection processes, improving work performance, productivity, and efficiency. AR-based guidance in product assembly and disassembly has also been found to boost task performance by up to 30%, substantially improving accuracy and lowering human errors. These advancements are streamlining industrial maintenance workflows, reducing downtime and increasing operational efficiency across the board (González-Argote et al., 2024). Industrial IMMERSIVE 2025: Advancing XR in Industry 4.0 At the Industrial IMMERSIVE Week 2025, top industry leaders came together to discuss the latest breakthroughs in XR technology for industrial use. One of the main topics of discussion was XR’s growing impact on workplace safety and immersive training environments. During the event, Kevin O’Donovan, a prominent technology evangelist and co-chair of the Industrial Metaverse & Digital Twin committee at VRARA, interviewed Annie Eaton, a trailblazing XR developer and CEO of Futurus. She shared exciting details about a groundbreaking safety training initiative, saying: “We have created a solution called XR Industrial, which has a collection of safety-themed lessons in VR … anything from hazards identification, like slips, trips, and falls, to pedestrian safety and interaction with mobile work equipment like forklifts or even autonomous vehicles in a manufacturing site.” By letting workers practice handling high-risk scenarios in a risk-free virtual setting, this initiative shows how XR makes workplaces safer. No wonder more companies are beginning to see the value in using such simulations to improve safety across operations and avoid accidents. Rethinking how manufacturing, training, and maintenance are done, extended reality is rapidly becoming necessary for Industry 4.0. The combination of rising academic study and practical experiences, like those shared during Industrial IMMERSIVE 2025, highlights how really strong this technology is. XR will always play a big role in optimizing efficiency, protecting workers, and…



Let's discuss your ideas

Contact us