From Novice to Pro: Dive into Best AR/VR Courses for Aspiring XR Developers

In recent years, IT and immersive technologies are one of the most popular fields that people choose for their future careers. According to Statista, as of January 2023, the number of IT workers was 3.1 million, and by 2032 the number of workers will exceed 6 million. Among those starting to work in the field of IT and XR, there are both young professionals and those who have career experience in other fields and want to change their lives. And free online courses, which introduce a beginner to the essence of the matter in an interesting and accessible language, are useful for future developers.

In this article, we offer an interesting selection of the best free XR training courses online. Whether you’re looking to develop XR experiences for Unity and Magic Leap 2, shoot a 360o film, or create your own metaverse, our selection of courses will provide you with the necessary skills and knowledge needed for those just starting their XR journey.

Create with AR: Face Filters by Unity

A training course for those new to AR application development, including creating face filters. This course is designed for those willing not only to learn the basics of programming applications on Unity but also to expand their portfolio with new cases, which will make it much easier to enter the field of XR.

The course is divided into three parts:

  • Get Started With AR. The future developer will learn the types of features in augmented reality, such as AR face filters, and AR markers that allow you to place digital content in real space. One will learn how to integrate a finished 3D model design into a game.
  • Create a basic face filter. The main goal of this segment is to create your own customized AR face mask, including creating face trackers and using various textures, 3D models, and other components that can be used for an AR mask;
  • Create an interactive face filter. In the final part of the course, the student has to make their mask interactive. In particular, developers also learn to add a user interface to the created mask and use visual scripts to program functions.

A student is able to independently monitor their own progress and mark the completed lessons on the page.

The entire course is available here: https://learn.unity.com/course/create-with-ar-face-filters?uv=2021.3 

Virtual Reality Development Specialization by the University of London

A virtual reality training program by the University of London is designed for beginners and consists of 5 courses. Its total duration is 6 months, 4 hours per week, with a flexible schedule.

Each of the 5 training courses contains the following information:

  • Introduction to virtual reality. Students get acquainted with the concept of virtual reality, its history, and basic principles;
  • 3D Models for Virtual Reality. In this course, students will take the first steps in developing 3D models for VR, the basic principles of digital content development, and overlaying models in a digital environment. Students will also learn the basic principles of one of the most common VR engines, Unity3D;
  • Interactive design with 3D models in VR. Students will learn to work with a key aspect of virtual reality, i.e., creating user interaction with the digital world. The course will cover the basic principles of creating interaction with virtual reality, taking into account the natural movements of the human body. In the end, students will receive useful advice from experts in the field of XR, and the main task to consolidate the result will be the creation of their own project where a person interacts with virtual reality;
  • Creation of interactive 3D characters and dialogues. Students will learn to create communication between users of virtual reality, in particular the psychology of communication in VR, the basic principles of animation of 3D characters, in particular, game characters that will be used by the player and NPCs that will interact with a real player;
  • Creating the First VR Game is the final course of the curriculum from the University of London, in which students have to create their first game in virtual reality and learn all the main stages of its development: idea, storyboarding, prototyping, testing, and implementation.

The hosts of the Virtual Reality Development Specialization program are Professor Marco Gillies and Dr. Sylvia Xueni Pan. Gillies is an Academic Director of Distance Learning and Deputy Head of Computing at the University of London. Pan is a senior lecturer at the Virtual Reality department of the same university.

You can sign up for the course here: https://www.coursera.org/specializations/virtual-reality 

Extended Reality for Everybody by Michigan University 

A learning program from the University of Michigan that introduces students to the general concept of extended reality. Its total duration is 3 months, 7 hours a week. The main goal of the program is to teach students the basic concepts of XR, the key problems of the development of augmented reality, and to correct them in further work with programs, as well as to learn how to create their own programs.

The program consists of three main courses:

  • Introduction to VR/AR/MR/XR, Technologies, Applications, and Key Issues. An introductory course to the concept of augmented reality where students will learn to understand the essential difference between virtual, augmented, mixed, and extended reality. Students will also learn more about the current state of XR, its main advantages, level of development, and problems;
  • User experience and VR/AR/MR interaction design. In this course, students will learn the basic principles of creating XR experiences, including creating extended reality prototypes and putting them into operation. In addition, the issue of ethics in creating an interactive XR application for the user will be raised here;
  • XR applications development with WebXR, Unity, and Unreal Engine. Students will gain practical skills in creating VR experiences in WebXR or Unity, AR applications with or without markers. The final course is where students will learn the basic concepts and techniques of creating complex applications in augmented reality, as well as learn to create their own apps taking into account the ethics, privacy, and basic principles of user accessibility.

The lead instructor for this course is Michael Nebeling, Associate Professor of Information in the School of Information and Associate Professor of Electrical Engineering and Computer Science, University of Michigan College of Engineering.

You can sign up for the course here: https://www.coursera.org/specializations/extended-reality-for-everybody 

What is Metaverse? by Meta 

A course by Meta will teach future developers how to interact with the metaverse and how to create their own metaverses, taking into account all the rules of security, ethics, accessibility, and inclusivity. The total duration of the course is 3 weeks, 3 hours per week.

Read also: From Pages to Pixels: Navigating Best Books on Metaverse and Its Groundbreaking Impact 

This course contains 6 modules covering topics such as

  • What is the metaverse. An introductory module that describes the basic concepts of this technology, the basic principles of interaction in the metaverse, and how to interact with other users in it;
  • Who creates the metaverse. Students will learn about the basic principles of creating a metaverse, what devices, platforms, and game engines are used to create their own digital universe, and how augmented reality is used here;
  • Verticals of the metaverse. Students will learn about the influence of the metaverse on various spheres of life, including education, medicine, city planning, and interaction with people. Students will also learn more about how marketing, design, and entertainment work in the realities of the metaverse;
  • Finance in the metaverse. This module tells how blockchain and cryptocurrency work in the realities of the metaverse, how to introduce your own economy into your metaverse, and the latest financial trends;
  • Responsibilities in the metaverse. Students will learn about the basic principles of building a metaverse, taking into account all the rules of ethics, inclusiveness, and diversity;
  • How to build a metaverse. The final module, in which students learn more about the possibilities of the metaverse, as well as the further development of this technology and the influence of companies on this technology.

You can sign up for the course here: https://www.coursera.org/learn/what-is-the-metaverse 

VR and 360 Video Production by Google AR & VR

Another free course for beginners from Google introduces students to virtual reality, 360o video, and the basic principles of creating such videos. The duration of the course is three weeks and four hours a week.

The main course consists of 4 modules, which include the following educational material:

  • What is 360o video and how does it relate to VR. An introductory module that covers the basic principles of creating 360o video;
  • Setting up VR pre-production. Students learn the basic technical nuances of preparing for video shooting. During the module, students will be provided with the necessary tools for writing a script, planning, selecting a crew and cast for a 360o film;
  • The shooting process of 360o video. Students will learn the main nuances of the operation of the 360o camera, as well as the arrangement of the shooting process itself;
  • VR post-production and release. The final module, in which students will learn how to edit the footage, as well as publish the finished film.

You can sign up for the course here: https://www.coursera.org/learn/360-vr-video-production 

Unity Development for Magic Leap 2

Another course from Unity Learn, created for beginners who have an initial level of command of the C# programming language and a basic knowledge and understanding of the rules for using the Unity platform. The purpose of this course is for students to learn how to design XR experiences for Magic Leap 2 augmented reality glasses.

Read also: Elevating Spatial Computing. Examining Technological Feats of Apple Vision Pro, Magic Leap, Meta Quest Pro, and Microsoft HoloLens 

The course consists of 14 separate video tutorials that introduce students to every aspect of Magic Leap 2 digital experiences development, starting with an introductory lecture that observes the general characteristics of the glasses. The following videos describe in more detail the intricacies of developing XR experiences, such as entering voice commands, tracking hand and eye movements, creating and superimposing markers on real space, etc.

A student completes the full course independently at any time convenient for them, just like other courses on the Unity Learn website.

The entire course can be found here: https://learn.unity.com/course/magic-leap-2-development?uv=2022.2 

 

We hope these free courses will inspire you and give you confidence in your future career as an XR developer. They will not only develop your practical skills and enrich you with theoretical knowledge. Training programs from Unity, Google, Meta, and many other augmented reality experts will also develop your creativity and flexibility, which XR developers need so much.

Image: Freepik

Latest Articles

June 2, 2025
Extended Reality in Industry 4.0: Transforming Industrial Processes

Understanding XR in Industry 4.0 Industry 4.0 marks a turning point in making industry systems smarter and more interconnected: it integrates digital and physical technologies like IoT, automation, and AI, into them. And you’ve probably heard about Extended Reality (XR), the umbrella for Virtual Reality, Augmented Reality, and Mixed Reality. It isn’t an add-on. XR is one of the primary technologies making the industry system change possible. XR has made a huge splash in Industry 4.0, and recent research shows how impactful it has become. For example, a 2023 study by Gattullo et al. points out that AR and VR are becoming a must-have in industrial settings. It makes sense — they improve productivity and enhance human-machine interactions (Gattullo et al., 2023). Meanwhile, research by Azuma et al. (2024) focuses on how XR makes workspaces safer and training more effective in industrial environments. One thing is clear: the integration of XR into Industry 4.0 closes the gap between what we imagine in digital simulations and what actually happens in the real world. Companies use XR to work smarter — it tightens up workflows, streamlines training, and improves safety measures. The uniqueness of XR is in its immersive nature. It allows teams to make better decisions, monitor operations with pinpoint accuracy, and effectively collaborate, even if team members are on opposite sides of the planet. XR Applications in Key Industrial Sectors Manufacturing and Production One of the most significant uses of XR in Industry 4.0 is in manufacturing, where it enhances design, production, and quality control processes. Engineers now utilize digital twins, virtual prototypes, and AR-assisted assembly lines, to catch possible defects before production even starts. Research by Mourtzis et al. (2024) shows how effective digital twin models powered by XR are in smart factories: for example, studies reveal that adopting XR-driven digital twins saves design cycle times by up to 40% and greatly speeds up product development. Besides, real-time monitoring with these tools has decreased system downtimes by 25% (Mourtzis et al., 2024). Training and Workforce Development The use of XR in employee training has changed how industrial workers acquire knowledge and grow skills. Hands-on XR-based simulations allow them to practice in realistic settings without any of the risks tied to operating heavy machinery, whereas traditional training methods usually involve lengthy hours, high expenses, and the need to set aside physical equipment, disrupting operations. A study published on ResearchGate titled ‘Immersive Virtual Reality Training in Industrial Settings: Effects on Memory Retention and Learning Outcomes’ offers interesting insights on XR’s use in workforce training. It was carried out by Jan Kubr, Alena Lochmannova, and Petr Horejsi, researchers from the University of West Bohemia in Pilsen, Czech Republic, specializing in industrial engineering and public health. The study focused on fire suppression training to show how different levels of immersion in VR affect training for industrial safety procedures. The findings were astounding. People trained in VR remembered 45% more information compared to those who went through traditional training. VR also led to a 35% jump in task accuracy and cut real-world errors by 50%. On top of that, companies using VR in their training programs noticed that new employees reached full productivity 25% faster. The study uncovered a key insight: while high-immersion VR training improves short-term memory retention and operational efficiency, excessive immersion — for example, using both audio navigation and visual cues at the same time — can overwhelm learners and hurt their ability to absorb information. These results showed how important it is to find the right balance when creating VR training programs to ensure they’re truly effective. XR-based simulations let industrial workers safely engage in realistic and hands-on scenarios without the hazards or costs of operating heavy machinery, changing the way they acquire new skills. Way better than sluggish, costly, and time-consuming traditional training methods that require physical equipment and significant downtime. Maintenance and Remote Assistance XR is also transforming equipment maintenance and troubleshooting. In place of physical manuals, technicians using AR-powered smart glasses can view real-time schematics, follow guided diagnostics, and connect with remote experts, reducing downtime. Recent research by Javier Gonzalez-Argote highlights how significantly AR-assisted maintenance has grown in the automotive industry. The study finds that AR, mostly mediated via portable devices, is widely used in maintenance, evaluation, diagnosis, repair, and inspection processes, improving work performance, productivity, and efficiency. AR-based guidance in product assembly and disassembly has also been found to boost task performance by up to 30%, substantially improving accuracy and lowering human errors. These advancements are streamlining industrial maintenance workflows, reducing downtime and increasing operational efficiency across the board (González-Argote et al., 2024). Industrial IMMERSIVE 2025: Advancing XR in Industry 4.0 At the Industrial IMMERSIVE Week 2025, top industry leaders came together to discuss the latest breakthroughs in XR technology for industrial use. One of the main topics of discussion was XR’s growing impact on workplace safety and immersive training environments. During the event, Kevin O’Donovan, a prominent technology evangelist and co-chair of the Industrial Metaverse & Digital Twin committee at VRARA, interviewed Annie Eaton, a trailblazing XR developer and CEO of Futurus. She shared exciting details about a groundbreaking safety training initiative, saying: “We have created a solution called XR Industrial, which has a collection of safety-themed lessons in VR … anything from hazards identification, like slips, trips, and falls, to pedestrian safety and interaction with mobile work equipment like forklifts or even autonomous vehicles in a manufacturing site.” By letting workers practice handling high-risk scenarios in a risk-free virtual setting, this initiative shows how XR makes workplaces safer. No wonder more companies are beginning to see the value in using such simulations to improve safety across operations and avoid accidents. Rethinking how manufacturing, training, and maintenance are done, extended reality is rapidly becoming necessary for Industry 4.0. The combination of rising academic study and practical experiences, like those shared during Industrial IMMERSIVE 2025, highlights how really strong this technology is. XR will always play a big role in optimizing efficiency, protecting workers, and…

March 24, 2025
VR & MR Headsets: How to Choose the Right One for Your Product

Introduction Virtual and mixed reality headsets are not just cool toys to show off at parties, though they’re definitely good for that. They train surgeons without risking a single patient, build immersive classrooms without ever leaving home, and even help to design something with unparalleled precision. But choosing VR/MR headsets … It’s not as simple as picking what looks sleek or what catches your eye on the shelf. And we get it. The difference between a headset that’s wired, standalone, or capable of merging the real and digital worlds is confusing sometimes. But we’ll break it all down in a way that makes sense. Types of VR Headsets VR and MR headsets have different capabilities. However, choosing the perfect one is less about specs and more about how they fit your needs and what you want to achieve. Here’s the lineup… Wired Headsets Wired headsets like HTC Vive Pro and Oculus Rift S should be connected to a high-performance PC to deliver stunningly detailed visuals and incredibly accurate tracking. Expect razor-sharp visuals that make virtual grass look better than real grass and tracking so on-point, you’d swear it knows what you’re about to do before you do. Wired headsets are best for high-stakes environments like surgical training, designing complex structures, or running realistic simulations for industries like aerospace. However, you’ll need a powerful computer to even get started, and a cable does mean less freedom to move around. Standalone Headsets No strings attached. Literally. Standalone headsets like Oculus Quest Pro, Meta Quest 3, Pico Neo 4, and many more) are lightweight, self-contained, and wireless, so you can jump between work and play with no need for external hardware. They are perfect for on-the-go use, casual gaming, and quick training sessions. From portable training setups to spontaneous VR adventures at home, these headsets are flexible and always ready for action (and by “action”, we mostly mean Zoom calls in VR if we’re being honest). However, standalone headsets may not flex enough for detailed, high-performance applications like ultra-realistic design work or creating highly detailed environments. Mixed Reality (MR) Headsets Mixed reality headsets blur the line between physical and digital worlds. They don’t just whisk you to a virtual reality — they invite the virtual to come hang out in your real one. And this means holograms nested on your desk, live data charts floating in the air, and playing chess with a virtual opponent right at your dining room table. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. The question isn’t just in what these headsets can do. It’s in how they fit into your reality, your goals, and your imagination. Now, the only question left is… which type is best for your needs? Detailed Headset Comparisons It’s time for us to play matchmaker between you and the headsets that align with your goals and vision. No awkward small talk here, just straight-to-the-point profiles of the top contenders. HTC Vive Pro This is your choice if you demand nothing but the best. With a resolution of 2448 x 2448 pixels per eye, it delivers visuals so sharp and detailed that they bring virtual landscapes to life with stunning clarity. HTC Vive Pro comes with base-station tracking that practically reads your mind, and every movement you make in the real world reflects perfectly in the virtual one. But this kind of performance doesn’t come without requirements. Like any overachiever, it’s got high standards and requires some serious backup. You’ll need a PC beefy enough to bench press an Intel Core i7 and an NVIDIA GeForce RTX 2070. High maintenance is also required, but it’s totally worth it. Best for: High-performance use cases like advanced simulations, surgical training, or projects that demand ultra-realistic visuals and tracking accuracy. Meta Quest 3 Unlilke the HTC Vive Pro, the Meta Quest 3 doesn’t require a tethered PV setup cling. This headset glides between VR and MR like a pro. One minute you’re battling in an entirely virtual world, and the next, you’re tossing virtual sticky notes onto your very real fridge. Meta Quest 3 doesn’t match the ultra-high resolution of the Vive Pro, but its display resolution reaches 2064 x 2208 pixels per eye — and this means sharp and clear visuals that are more than adequate for training sessions, casual games, and other applications. Best for: Portable classrooms, mobile training sessions, or casual VR activities. Magic Leap 2 The Magic Leap 2 sets itself apart not with flashy design, but with seamless hand and eye tracking that precisely follow your movements and the headset that feels like it knows you. This headset is the one you want when you’re blending digital overlays with your real-life interactions. 2048 x 1080 pixels per eye and the 70 degrees diagonal field of view come with a price tag that’s way loftier than its competitors. But remember that visionaries always play on their terms Best for: Interactive lessons, augmented reality showstoppers, or drawing attention at industry conventions with show-stopping demos. HTC Vive XR Elite The HTC Vive XR Elite doesn’t confine itself to one category. It’s built for users who expect both performance and portability in one device. 1920 x 1920 resolution per eye doesn’t make it quite as flashy as the overachiever above, but it makes up for it with adaptability. This headset switches from wired to wireless within moments and keeps up with how you want to work or create. Best for: Flexible setups, easily transitioning between wired and wireless experiences, and managing dynamic workflows. Oculus Quest Pro The Oculus Quest Pro is a devices that lets its capabilities speak for themselves. Its smooth and reliable performance,…

October 4, 2024
Meta Connect 2024: Major Innovations in AR, VR, and AI

Meta Connect 2024 explored new horizons in the domains of augmented reality, virtual reality, and artificial intelligence. From affordable mixed reality headsets to next-generation AI-integrated devices, let’s take a look at the salient features of the event and what they entail for the future of immersive technologies. Meta CEO Mark Zuckerberg speaks at Meta Connect, Meta’s annual event on its latest software and hardware, in Menlo Park, California, on Sept. 25, 2024. David Paul Morris / Bloomberg / Contributor / Getty Images Orion AR Glasses At the metaverse where people and objects interact, Meta showcased a concept of Orion AR Glasses that allows users to view holographic video content. The focus was on hand-gesture control, offering a seamless, hands-free experience for interacting with digital content. The wearable augmented reality market estimates looked like a massive increase in sales and the buyouts of the market as analysts believed are rear-to-market figures standing at 114.5 billion US dollars in the year 2030. The Orion glasses are Meta’s courageous and aggressive tilt towards this booming market segment. Applications can extend to hands-free navigation, virtual conferences, gaming, training sessions, and more. Quest 3S Headset Meta’s Quest 3S is priced affordably at $299 for the 128 GB model, making it one of the most accessible mixed reality headsets available. This particular headset offers the possibility of both virtual immersion (via VR headsets) and active augmented interaction (via AR headsets). Meta hopes to incorporate a variety of other applications in the Quest 3S to enhance the overall experience. Display: It employs the most modern and advanced pancake lenses which deliver sharper pictures and vibrant colors and virtually eliminate the ‘screen-door effect’ witnessed in previous VR devices. Processor: Qualcomm’s Snapdragon XR2 Gen 2 chip cuts short the loading time, thus incorporating smoother graphics and better performance. Resolution: Improvement of more than 50 pixels is observed in most of the devices compared to older iterations on the market, making them better cater to the customers’ needs Hand-Tracking: Eliminating the need for software, such as controllers mandatory for interaction with the virtual world, with the advanced hand-tracking mechanisms being introduced. Mixed Reality: A smooth transition between AR and VR fluidly makes them applicable in diverse fields like training and education, health issues, games, and many others. With a projected $13 billion global market for AR/VR devices by 2025, Meta is positioning the Quest 3S as a leader in accessible mixed reality. Meta AI Updates Meta Incorporated released new AI-assisted features, such as the ability to talk to John Cena through a celebrity avatar. These avatars provide a great degree of individuality and entertainment in the digital environment. Furthermore, one can benefit from live translation functions that help enhance multilingual art communication and promote cultural and social interaction. The introduction of AI-powered avatars and the use of AI tools for translation promotes the more engaging experiences with great application potential for international business communication, social networks, and games. Approximately, 85% of customer sales interactions will be run through AI and its related technologies. By 2030, these tools may have become one of the main forms of digital communication. AI Image Generation for Facebook and Instagram Meta has also revealed new capabilities of its AI tools, which allow users to create and post images right in Facebook and Instagram. The feature helps followers or users in this case to create simple tailored images quickly and therefore contributes to the users’ social media marketing. These AI widgets align with Meta’s plans to increase user interaction on the company’s platforms. Social media engagement holds 65% of the market of visual content marketers, stating that visual content increases engagement. These tools enable the audience to easily generate high-quality sharable visual images without any design background. AI for Instagram Reels: Auto-Dubbing and Lip-Syncing Advancing Meta’s well-known Artificial Intelligence capabilities, Instagram Reels will, in the near future, come equipped with automatic dubbing and lip-syncing features powered by the artificial intelligence. This new feature is likely to ease the work of content creators, especially those looking to elevate their video storytelling with less time dedicated to editing. The feature is not limited to countries with populations of over two billion Instagram users. Instead, this refers to Instagram’s own large user base, which exceeds two billion monthly active users globally. This AI-powered feature will streamline content creation and boost the volume and quality of user-generated content. Ray-Ban Smart Glasses The company also shared the news about the extensions of the undoubted and brightest technology of the — its Ray-Ban Smart Glasses which will become commercially available in late 2024. Enhanced artificial intelligence capabilities will include the glasses with hands-free audio and the ability to provide real-time translation. The company’s vision was making Ray-Ban spectacles more user friendly to help those who wear them with complicated tasks, such as language translation, through the use of artificial intelligence. At Meta Connect 2024, again, the company declared their aim to bring immersive technology to the masses by offering low-priced equipment and advanced AI capabilities. Meta is confident to lead the new era of AR, VR, and AI innovations in products such as the Quest 3S, AI-enhanced Instagram features, and improved Ray-Ban smart glasses. With these processes integrated into our digital lives, users will discover new ways to interact, create, and communicate within virtual worlds.



Let's discuss your ideas

Contact us