How virtual reality makes remote work more convenient
Architect using vr glasses for building model design in architectural office. Man engineer working with headset and virtual reality to analyze construction layout and development.

Modern worldwide companies like Meta, HTC, and Microsoft are developing virtual offices for remote workers. COVID-19 was one of the reasons why VR offices are gradually becoming popular. 

Pricewaterhouse Cooper predicts that 23.5 million people will have virtual reality workplaces by 2030. 

Besides, in the next five years, Meta plans to create 10 000 new workplaces in the metaverse for European Union countries like Ireland, Germany, France, Italy, Poland, The Netherlands, and Spain. 

What is VR office and its purpose 

VR office is a digital space where people work, communicate, and interact with their colleagues using avatars. VR office space resembles a real one, but has some special traits. 

The main task of a virtual office is to create favorable work conditions for people who can do remote collaboration from different parts of the world.

How to choose a virtual office

We talked to the head of the XR department Oleksii V. on what a VR office should be like,  to meet all the requirements of a company, which needs an office like this. According to him, the main purpose of the VR office as a digital version of the real one is to give a VR headset user the necessary tool kit to make them feel like they’re actually in this office. Also, this experience can help them  participate in conferences, carry out presentations, and communicate with colleagues and authorities directly. 

What you should pay attention to it so that, depending on purpose of designing VR office, you can have a different number of tool kits. Let’s say you need drawing or YouTube video streaming, somewhere you need to be able to download, show, and discuss PDF files, somewhere you need to show 3D models. Thus, it all depends on the field and specifics of the industry we design virtual offices for,” Oleksii V. said.  

Advantages of VR office

Flexible Workflow Customization

The possibility to work in a fully customized virtual workplace that fits people’s functional and esthetical needs is the one of the main advantages of VR office work. 

For example, VR app Immersed gives access to 15 different locations where VR headset user can work: from the cave with waterfall to the space station on the Earth orbit.

There’s also a virtual coworking place, designed as a café, available for people around the world in the Immersed app. 

Increased remote work productivity

A comfortable virtual workplace helps to increase productivity. It is possible due to maximal isolation from various distractions. As the result, virtual reality workplace makes worker unleash their full potential. 

According to the research, remote workers in Deep Mode increase their productivity by 48%  and make up for 16 hours of working time lost because of distractions. 

Gender inequality decrease 

Workers’ digital avatars shouldn’t necessarily represent their gender and appearance. So, it can positively affect gender equality and fight discrimination by gender, race, sexual orientation, etc. 

Experiments with blind auditions of musicians prove this point. The idea was to prevent judges from seeing musicians’ appearance during the audition. And this gave some results:  five top-rated US orchestras increased the number of female musicians from 6% in 1970 to 21% in 1993. The New York  Philharmonic orchestra increased the number of women from 0% to 33% у 1997

AR/VR Apps development

Communication improvement

Modern technologies allow digital avatars to represent the host’s appearance and emotions. Oculus presented new, improved avatar’s functions, with enlarged choice of emotions, skin colors, face shapes, and limited number of clothes. Also, users can add over-the-ear hearing aids and wheelchairs to their digital avatars. 

We hope your new virtual self enables you to represent yourself online the way you want to be represented — whether that’s to friends and family, your local community, or beyond”, said Aigerim Shorman, General Manager for Avatars and Identity at Meta

VR office disadvantages you should pay attention to

Virtual reality remote work is a new field of digital technologies, which have both advantages and disadvantages. We suggest paying attention to: 

  • personal data leaks;
  • possible violations of privacy and harassment;
  • the necessary equipment still isn’t available to everyone and evenly distributed around the world. 

Solving this issues can make virtual space safer, which may positively affect the distribution of the digital office technology. 

Conclusion

Today, VR remote work is gradually becoming popular. The COVID-19 pandemic kick-started VR offices development. Virtual offices make remote work more productive, support team work, and improve interaction between colleagues. 

Latest Articles

April 29, 2025
Med Tech Standards: Why DICOM is Stuck in the 90s and What Needs to Change

You probably don’t think much about medical scan data. But they’re everywhere. If you’ve got an X-ray or an MRI, your images were almost certainly processed by DICOM (Digital Imaging and Communications in Medicine), the globally accepted standard for storing and sharing medical imaging data like X-rays, MRIs, and CT scans between hospitals, clinics, and research institutions since the late 80s and early 90s. But there’s a problem: while medical technology has made incredible leaps in the last 30 years, DICOM hasn’t kept up. What is DICOM anyway? DICOM still operates in ways that feel more suited to a 1990s environment of local networks and limited computing power. Despite updates, the system doesn’t meet the demands of cloud computing, AI-driven diagnostics, and real-time collaboration. It lacks cloud-native support and rigid file structures, and shows inconsistencies between different manufacturers. If your doctor still hands you a CD with your scan on it in 2025 (!), DICOM is a big part of that story. The DICOM Legacy How DICOM Came to Be When DICOM was developed in the 1980s, the focus was on solving some big problems in medical imaging, and honestly, it did the job brilliantly for its time. The initial idea was to create a universal language for different hardware and software platforms to communicate with each other, sort of like building a shared language for technology. They also had to make sure it was compatible with older devices already in use. At that time, the most practical option was to rely on local networks since cloud-based solutions simply didn’t exist yet. These decisions helped DICOM become the go-to standard, but they also locked it into an outdated framework that’s now tough to update. Why It’s Hard to Change DICOM Medical standards don’t evolve as fast as consumer technology like phones or computers. Changing something like DICOM doesn’t happen overnight. It’s a slow and complicated process muddled by layers of regulatory approvals and opinions from a tangled web or organizations and stakeholders. What’s more, hospitals have decades of patient data tied to these systems, and making big changes that may break compatibility isn’t easy. And to top it all off, device manufacturers have different ways of interpreting and implementing DICOM, so it’s nearly impossible to enforce consistency. The Trouble With Staying Backwards Compatible DICOM’s focus on working perfectly with old systems was smart at the time, but it’s created some long-term problems. Technological advancements have moved on with AI, cloud storage, and tools for real-time diagnostics. They have shown immediately how limited DICOM can be in catching up with these innovations. Also, vendor-specific implementations have created quirks that make devices less compatible with one another than they should be. And don’t even get started on trying to link DICOM with modern healthcare systems like electronic records or telemedicine platforms. It would be like trying to plug a 1980s gadget into a smart technology ecosystem — not impossible, but far from seamless. Why Your CT Scanner and MRI Machine Aren’t Speaking the Same Language Interoperability in medical imaging sounds great in theory — everything just works, no matter the device or manufacturer — however, in practice, things got messy. Some issues sound abstract, but for doctors and hospitals, they mean delays, misinterpretations, and extra burden. So, why don’t devices always play nice? The Problem With “Standards” That Aren’t Very Standard You’d think having a universal standard like DICOM would ensure easy interoperability because everybody follows the same rules. Not exactly. Device manufacturers implement it differently, and this leads to: Private tags. These are proprietary pieces of data that only specific software can understand. If your software doesn’t understand them, you’re out of luck. Missing or vague fields. Some devices leave out crucial metadata or define it differently. File structure issues. Small differences in how data is formatted sometimes make files unreadable. The idea of a universal standard is nice, but the way it’s applied leaves a lot to be desired. Metadata and Tag Interpretation Issues DICOM images contain extensive metadata to describe details like how the patient was positioned during the scan or how the images fit together. But when this metadata isn’t standardized, you end up with metadata and tag interpretation issues. For example, inconsistencies in slice spacing or image order can throw off 3D reconstructions, leaving scans misaligned. As a result, when doctors try to compare scans over time or across different systems, they often have to deal with mismatched or incomplete data. These inconsistencies make what should be straightforward tasks unnecessarily complicated and create challenges for accurate diagnoses and proper patient care. File Structure and Storage Inconsistencies The way images are stored varies so much between devices that it often causes problems. Some scanners save each image slice separately. Others put them together in one file. Then there are slight differences in DICOM implementations that make it difficult to read images on some systems. Compression adds another layer of complexity — it’s not the same across the board. File sizes and levels of quality vary widely. All these mismatches and inconsistencies make everything harder for hospitals and doctors trying to work together. Orientation and Interpretation Issues Medical imaging is incredible, but sometimes working with scans slows things down when time matters most and makes it harder to get accurate insights for patient care. There are several reasons for this. Different Coordinate Systems Sometimes, DICOM permits the use of different coordination systems and causes confusions. For instance, patient-based coordinates relate to the patient’s body, like top-to-bottom (head-to-feet) or side-to-side (left-to-right). Scanner-based coordinates, on the other hand, are based on the imaging device itself. When these systems don’t match up, it creates misalignment issues in multi-modal imaging studies, where scans from different devices need to work together. Slice Ordering Problems Scans like MRIs and CTs are made up of thin cross-sectional images called slices. But not every scanner orders or numbers these slices in the same way. Some slices can be stored from top-to-bottom or bottom-to-top. If the order…

March 24, 2025
VR & MR Headsets: How to Choose the Right One for Your Product

Introduction Virtual and mixed reality headsets are not just cool toys to show off at parties, though they’re definitely good for that. They train surgeons without risking a single patient, build immersive classrooms without ever leaving home, and even help to design something with unparalleled precision. But choosing VR/MR headsets … It’s not as simple as picking what looks sleek or what catches your eye on the shelf. And we get it. The difference between a headset that’s wired, standalone, or capable of merging the real and digital worlds is confusing sometimes. But we’ll break it all down in a way that makes sense. Types of VR Headsets VR and MR headsets have different capabilities. However, choosing the perfect one is less about specs and more about how they fit your needs and what you want to achieve. Here’s the lineup… Wired Headsets Wired headsets like HTC Vive Pro and Oculus Rift S should be connected to a high-performance PC to deliver stunningly detailed visuals and incredibly accurate tracking. Expect razor-sharp visuals that make virtual grass look better than real grass and tracking so on-point, you’d swear it knows what you’re about to do before you do. Wired headsets are best for high-stakes environments like surgical training, designing complex structures, or running realistic simulations for industries like aerospace. However, you’ll need a powerful computer to even get started, and a cable does mean less freedom to move around. Standalone Headsets No strings attached. Literally. Standalone headsets like Oculus Quest Pro, Meta Quest 3, Pico Neo 4, and many more) are lightweight, self-contained, and wireless, so you can jump between work and play with no need for external hardware. They are perfect for on-the-go use, casual gaming, and quick training sessions. From portable training setups to spontaneous VR adventures at home, these headsets are flexible and always ready for action (and by “action”, we mostly mean Zoom calls in VR if we’re being honest). However, standalone headsets may not flex enough for detailed, high-performance applications like ultra-realistic design work or creating highly detailed environments. Mixed Reality (MR) Headsets Mixed reality headsets blur the line between physical and digital worlds. They don’t just whisk you to a virtual reality — they invite the virtual to come hang out in your real one. And this means holograms nested on your desk, live data charts floating in the air, and playing chess with a virtual opponent right at your dining room table. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. The question isn’t just in what these headsets can do. It’s in how they fit into your reality, your goals, and your imagination. Now, the only question left is… which type is best for your needs? Detailed Headset Comparisons It’s time for us to play matchmaker between you and the headsets that align with your goals and vision. No awkward small talk here, just straight-to-the-point profiles of the top contenders. HTC Vive Pro This is your choice if you demand nothing but the best. With a resolution of 2448 x 2448 pixels per eye, it delivers visuals so sharp and detailed that they bring virtual landscapes to life with stunning clarity. HTC Vive Pro comes with base-station tracking that practically reads your mind, and every movement you make in the real world reflects perfectly in the virtual one. But this kind of performance doesn’t come without requirements. Like any overachiever, it’s got high standards and requires some serious backup. You’ll need a PC beefy enough to bench press an Intel Core i7 and an NVIDIA GeForce RTX 2070. High maintenance is also required, but it’s totally worth it. Best for: High-performance use cases like advanced simulations, surgical training, or projects that demand ultra-realistic visuals and tracking accuracy. Meta Quest 3 Unlilke the HTC Vive Pro, the Meta Quest 3 doesn’t require a tethered PV setup cling. This headset glides between VR and MR like a pro. One minute you’re battling in an entirely virtual world, and the next, you’re tossing virtual sticky notes onto your very real fridge. Meta Quest 3 doesn’t match the ultra-high resolution of the Vive Pro, but its display resolution reaches 2064 x 2208 pixels per eye — and this means sharp and clear visuals that are more than adequate for training sessions, casual games, and other applications. Best for: Portable classrooms, mobile training sessions, or casual VR activities. Magic Leap 2 The Magic Leap 2 sets itself apart not with flashy design, but with seamless hand and eye tracking that precisely follow your movements and the headset that feels like it knows you. This headset is the one you want when you’re blending digital overlays with your real-life interactions. 2048 x 1080 pixels per eye and the 70 degrees diagonal field of view come with a price tag that’s way loftier than its competitors. But remember that visionaries always play on their terms Best for: Interactive lessons, augmented reality showstoppers, or drawing attention at industry conventions with show-stopping demos. HTC Vive XR Elite The HTC Vive XR Elite doesn’t confine itself to one category. It’s built for users who expect both performance and portability in one device. 1920 x 1920 resolution per eye doesn’t make it quite as flashy as the overachiever above, but it makes up for it with adaptability. This headset switches from wired to wireless within moments and keeps up with how you want to work or create. Best for: Flexible setups, easily transitioning between wired and wireless experiences, and managing dynamic workflows. Oculus Quest Pro The Oculus Quest Pro is a devices that lets its capabilities speak for themselves. Its smooth and reliable performance,…

October 4, 2024
Meta Connect 2024: Major Innovations in AR, VR, and AI

Meta Connect 2024 explored new horizons in the domains of augmented reality, virtual reality, and artificial intelligence. From affordable mixed reality headsets to next-generation AI-integrated devices, let’s take a look at the salient features of the event and what they entail for the future of immersive technologies. Meta CEO Mark Zuckerberg speaks at Meta Connect, Meta’s annual event on its latest software and hardware, in Menlo Park, California, on Sept. 25, 2024. David Paul Morris / Bloomberg / Contributor / Getty Images Orion AR Glasses At the metaverse where people and objects interact, Meta showcased a concept of Orion AR Glasses that allows users to view holographic video content. The focus was on hand-gesture control, offering a seamless, hands-free experience for interacting with digital content. The wearable augmented reality market estimates looked like a massive increase in sales and the buyouts of the market as analysts believed are rear-to-market figures standing at 114.5 billion US dollars in the year 2030. The Orion glasses are Meta’s courageous and aggressive tilt towards this booming market segment. Applications can extend to hands-free navigation, virtual conferences, gaming, training sessions, and more. Quest 3S Headset Meta’s Quest 3S is priced affordably at $299 for the 128 GB model, making it one of the most accessible mixed reality headsets available. This particular headset offers the possibility of both virtual immersion (via VR headsets) and active augmented interaction (via AR headsets). Meta hopes to incorporate a variety of other applications in the Quest 3S to enhance the overall experience. Display: It employs the most modern and advanced pancake lenses which deliver sharper pictures and vibrant colors and virtually eliminate the ‘screen-door effect’ witnessed in previous VR devices. Processor: Qualcomm’s Snapdragon XR2 Gen 2 chip cuts short the loading time, thus incorporating smoother graphics and better performance. Resolution: Improvement of more than 50 pixels is observed in most of the devices compared to older iterations on the market, making them better cater to the customers’ needs Hand-Tracking: Eliminating the need for software, such as controllers mandatory for interaction with the virtual world, with the advanced hand-tracking mechanisms being introduced. Mixed Reality: A smooth transition between AR and VR fluidly makes them applicable in diverse fields like training and education, health issues, games, and many others. With a projected $13 billion global market for AR/VR devices by 2025, Meta is positioning the Quest 3S as a leader in accessible mixed reality. Meta AI Updates Meta Incorporated released new AI-assisted features, such as the ability to talk to John Cena through a celebrity avatar. These avatars provide a great degree of individuality and entertainment in the digital environment. Furthermore, one can benefit from live translation functions that help enhance multilingual art communication and promote cultural and social interaction. The introduction of AI-powered avatars and the use of AI tools for translation promotes the more engaging experiences with great application potential for international business communication, social networks, and games. Approximately, 85% of customer sales interactions will be run through AI and its related technologies. By 2030, these tools may have become one of the main forms of digital communication. AI Image Generation for Facebook and Instagram Meta has also revealed new capabilities of its AI tools, which allow users to create and post images right in Facebook and Instagram. The feature helps followers or users in this case to create simple tailored images quickly and therefore contributes to the users’ social media marketing. These AI widgets align with Meta’s plans to increase user interaction on the company’s platforms. Social media engagement holds 65% of the market of visual content marketers, stating that visual content increases engagement. These tools enable the audience to easily generate high-quality sharable visual images without any design background. AI for Instagram Reels: Auto-Dubbing and Lip-Syncing Advancing Meta’s well-known Artificial Intelligence capabilities, Instagram Reels will, in the near future, come equipped with automatic dubbing and lip-syncing features powered by the artificial intelligence. This new feature is likely to ease the work of content creators, especially those looking to elevate their video storytelling with less time dedicated to editing. The feature is not limited to countries with populations of over two billion Instagram users. Instead, this refers to Instagram’s own large user base, which exceeds two billion monthly active users globally. This AI-powered feature will streamline content creation and boost the volume and quality of user-generated content. Ray-Ban Smart Glasses The company also shared the news about the extensions of the undoubted and brightest technology of the — its Ray-Ban Smart Glasses which will become commercially available in late 2024. Enhanced artificial intelligence capabilities will include the glasses with hands-free audio and the ability to provide real-time translation. The company’s vision was making Ray-Ban spectacles more user friendly to help those who wear them with complicated tasks, such as language translation, through the use of artificial intelligence. At Meta Connect 2024, again, the company declared their aim to bring immersive technology to the masses by offering low-priced equipment and advanced AI capabilities. Meta is confident to lead the new era of AR, VR, and AI innovations in products such as the Quest 3S, AI-enhanced Instagram features, and improved Ray-Ban smart glasses. With these processes integrated into our digital lives, users will discover new ways to interact, create, and communicate within virtual worlds.



Let's discuss your ideas

Contact us