Exploring Spatial Computing and Its Impact on Industries

Spatial computing is a fast-growing field that is set to create a new way of interacting with the world around us. This technology has the potential to revolutionize many industries, from healthcare and education to manufacturing and more. The potential is seen by such well-known companies as Apple, Meta, Magic Leap, and others, which work with spatial computing and mixed, augmented, and virtual reality. By 2032, the total value of the spatial computing market will grow to more than $512 billion, compared to $87.5 billion in 2022.

In this article, we will take a closer look at the concept of spatial computing and try to explain how it differs from mixed reality, as well as its potential impact on various industries. 

Rise of Spatial Computing.  Historical Overview

According to Wikipedia, the term “spatial computing” was first coined in 2003, in the eponymous research paper by Simon Greenwold, a former researcher in the Aesthetics and Computation group at the MIT Media Lab and current head of Story As… Simon Greenwald. The original definition of spatial computing is “a human-machine interaction in which the machine retains and manipulates referents to real objects and spaces”.

With the development of immersive technologies, modern spatial computing primarily describes a direct human interaction with technologies and digital content. For example, spatial computing involves the use of gestures, head and eye movements, voice commands and their integration into the digital interface of a device, such as the latest Apple Vision Pro.

As defined by Apple, spatial computing is a technology that seamlessly blends digital content with the real world. For example, this technology is useful for remote work, games, or movies, where a headset user can expand the screen to gigantic dimensions, making home viewing more like a real cinema experience.

Spatial Computing vs. Mixed Reality. Understanding Key Differences

There is a popular opinion that the term “spatial computing” is not so innovative. According to some experts, this technology works on the principle of mixed reality, popularized by Microsoft with the help of Hololens MR glasses. And indeed, according to Vladimir Grygoriev, Qualium Systems tech lead, both mixed reality and spatial computing impose digital objects on the real space, considering the physics of the space.

“In fact, many devices already do the same spatial mapping as Apple does. And what is Apple planning to present, what is the main innovation and the difference? First, they want to add such image quality that a person will not feel the artificiality of it on devices. Meaning, you have a cup standing in front of you, and when being touched, it falls, spills, and breaks. But when you take off your glasses, it does not even exist,” Grygoriev said.

On the other hand, when releasing the newest headset, Apple plans to use “spatial computing” as a collective term for other areas, such as spatial rendering, spatial mapping, spatial interactions, etc. The innovation of Vision Pro is also about its functionality, with the interface allowing you to turn on several applications at the same time.

“Apple will provide an option, that allows you to run a bunch of applications in small windows in your room. It will also give other people access to your space. You can make 5–10 different screens, where various types of content are being sheared. Then you can close some apps and, wearing a headset, go from the dining room to the kitchen while checking your online chat,” Grygoriev said.

Implementing Spatial Computing and Mixed Reality

Spatial computing is used in such areas as

  • 3D Modeling. Due to the fact that spatial computing technology can seamlessly integrate digital objects into real space, a user of an AR/VR headset can design a 3D model of their future project, whether it is a building, a car, a room, etc. With spatial computing, a user has the ability to zoom in and out a digital object, view it from all sides, etc. This gives the user the opportunity to see the future construction in more detail and correct errors that can cause serious financial losses. For example, in this video, an engineer wearing Hololens 2 glasses projects a future car model on his desk.

  • Remote collaboration. With spatial computing and mixed reality, employees who are in different places can collaborate and see each other. It can be either a completely virtual environment (for example, a virtual office) or an MR option, in which the employee can see a digital screen with the image of their colleague or his own digital avatar in XR-glasses, without leaving a physical workplace. One of the interesting cases of remote collaboration through MR is the concept of mixed reality from the Airbus airline company. The company’s employees work with customers on the aircraft’s family cabin design. The concept offers a full recreation of the virtual cabin on portable devices, as well as the possibility of collective work of MR-glasses users on a digital model of the cabin superimposed on the real world.

  • Training and skill development. Mixed reality and spatial computing have found their application for training employees in various fields. The convenience of MR training lies in the fact that the employee acquires practical skills at work with the help of digital instructions that are smoothly superimposed on the workplace. Mixed reality and spatial computing are not only implemented to train doctors and factory workers. For example, mixed reality is used to train military pilots for the F-16, F-18, and F-35 fighter jets. During training from Varjo, the pilot sits in the cockpit with a real control panel. A pilot, while training in MR glasses, sees a real image of himself in the cockpit alongside a virtual environment that reproduces the training ground.

Spatial Computing Technologies. Where and How They’re Making an Impact 

Empowering Medical Professionals: Spatial Computing’s Role

Spatial computing is already finding its application in the field of medicine. This technology allows you to create interactive digital twins of patients, so that doctors can examine the body from any angle and see a better picture of their diagnosis, more accurately select drugs and create a treatment plan. Also, digital 3D projections are actively used both during surgical interventions and during training. 

For example, the Lynx company, in collaboration with the research center INSERM, created a mixed reality program for training medics and conducting surgeries. Thus, surgeons in MR headsets can visualize a patient’s organ they are going to operate on before and during the procedure itself, calculating all possible risks and consequences. The doctor can also add scans of the patient’s real organs and data from their medical record to provide a more realistic experience. During the operation, the doctor in MR glasses is able to monitor the processes in the patient’s body in real time and manipulate digital content using hand gestures.

How Spatial Computing Enhances Architectural Processes

With spatial computing, architects and designers can create interactive presentations. Such presentations can reassure the client in a more efficient way and show them how the final product will look. In this way, it is possible to present the project more transparently and clearly so that a customer pays attention to the design flaws, which will be eliminated in the future.

The development of architectural projects with the help of spatial computing allows you to take into account the nuances of the future building and calculate possible design errors.

For example, the French real estate firm BNP Paribas Group, together with Magic Leap and Vectuel & RF Studio, developed “the POD”, a special capsule with virtual reality glasses,  a client enters into and puts on the glasses. In them, he sees a virtual tour with digital models of the future buildings that can be purchased, as well as a visual tutorial on purchasing real estate.

Spatial Computing’s Role in Modern Manufacturing

In manufacturing, spatial computing is used in several directions, such as virtual training, navigation, remote support, creating a digital double of the supply chain, tracking processes in the chain in real-time, etc. Thanks to spatial computing, an employee receives digital instructions that facilitate his work without leaving the workplace.

The American manufacturing company PBC Linear released an AR training for factory workers using tablets and AR glasses. The main goal of introducing the augmented reality is to reduce the training time of employees from three weeks to three days.

“The first thing we do is we record an operator running through the procedures of the machine. Whether it’s a start-up, tool touch-off, blow-off, or any sort of quality. We’ll have someone standing behind them recording and asking questions. They then take those recordings and those questions up to either their computer to author the instructions, or in front of the machine they’ll put on a HoloLens or Magic Leap and they’ll start creating those instructions, just as the tool maker operator laid out for them. And within just a few hours they’ll have a virtual reality or augmented reality version of that same training,” said Beau Wileman, the Factor of the Future Manager.

Spatial Computing Technologies. Future of Learning in Digital Age

Immersive technologies have been proven to enhance the student’s ability to learn new material and consolidate theoretical skills. According to Arbor XR, students are almost 4 times more emotionally connected to the learning material and 4 times more focused on learning.

With mixed reality and spatial computing, a traditional classroom lesson can be turned into an interesting adventure by visually showing an interactive digital model of the learned subject.

For example, the Titans of Space MR app for the Meta Quest glasses will be useful for those who study astronomy. In this app, the option of virtual tours of the digital universe with interactive models of celestial bodies is available. Students travel on a board of a spaceship and can see, for example, the digital solar system up close.

Spatial Computing Revolutionizing Advertising 

In today’s technology era, marketers and advertisers are increasingly paying attention to XR. It is confirmed that with the help of interactive content, customers become more interested in the product offered. Knowing this, 90% of companies already use or plan to introduce mixed reality in their advertising campaigns.

In October 2022, at the NFL games, Gilette created an MR ad for the stadium with a large digital model of the razor.

Spatial computing continues the development of technological innovations that blur the boundaries between the physical and digital worlds. Like virtual, augmented, and mixed reality, spatial computing is a transformative force that will carry on shaping industries for years to come. Advanced devices like Apple Vision Pro offer users a new way of interacting with digital objects that respond to the physics of the real environment. Therefore, the technologies of spatial computing and mixed reality have come in handy in such areas as manufacturing, architecture, mechanical engineering, education, etc.

Latest Articles

October 4, 2024
Meta Connect 2024: Major Innovations in AR, VR, and AI

Meta Connect 2024 explored new horizons in the domains of augmented reality, virtual reality, and artificial intelligence. From affordable mixed reality headsets to next-generation AI-integrated devices, let’s take a look at the salient features of the event and what they entail for the future of immersive technologies. Meta CEO Mark Zuckerberg speaks at Meta Connect, Meta’s annual event on its latest software and hardware, in Menlo Park, California, on Sept. 25, 2024. David Paul Morris / Bloomberg / Contributor / Getty Images Orion AR Glasses At the metaverse where people and objects interact, Meta showcased a concept of Orion AR Glasses that allows users to view holographic video content. The focus was on hand-gesture control, offering a seamless, hands-free experience for interacting with digital content. The wearable augmented reality market estimates looked like a massive increase in sales and the buyouts of the market as analysts believed are rear-to-market figures standing at 114.5 billion US dollars in the year 2030. The Orion glasses are Meta’s courageous and aggressive tilt towards this booming market segment. Applications can extend to hands-free navigation, virtual conferences, gaming, training sessions, and more. Quest 3S Headset Meta’s Quest 3S is priced affordably at $299 for the 128 GB model, making it one of the most accessible mixed reality headsets available. This particular headset offers the possibility of both virtual immersion (via VR headsets) and active augmented interaction (via AR headsets). Meta hopes to incorporate a variety of other applications in the Quest 3S to enhance the overall experience. Display: It employs the most modern and advanced pancake lenses which deliver sharper pictures and vibrant colors and virtually eliminate the ‘screen-door effect’ witnessed in previous VR devices. Processor: Qualcomm’s Snapdragon XR2 Gen 2 chip cuts short the loading time, thus incorporating smoother graphics and better performance. Resolution: Improvement of more than 50 pixels is observed in most of the devices compared to older iterations on the market, making them better cater to the customers’ needs Hand-Tracking: Eliminating the need for software, such as controllers mandatory for interaction with the virtual world, with the advanced hand-tracking mechanisms being introduced. Mixed Reality: A smooth transition between AR and VR fluidly makes them applicable in diverse fields like training and education, health issues, games, and many others. With a projected $13 billion global market for AR/VR devices by 2025, Meta is positioning the Quest 3S as a leader in accessible mixed reality. Meta AI Updates Meta Incorporated released new AI-assisted features, such as the ability to talk to John Cena through a celebrity avatar. These avatars provide a great degree of individuality and entertainment in the digital environment. Furthermore, one can benefit from live translation functions that help enhance multilingual art communication and promote cultural and social interaction. The introduction of AI-powered avatars and the use of AI tools for translation promotes the more engaging experiences with great application potential for international business communication, social networks, and games. Approximately, 85% of customer sales interactions will be run through AI and its related technologies. By 2030, these tools may have become one of the main forms of digital communication. AI Image Generation for Facebook and Instagram Meta has also revealed new capabilities of its AI tools, which allow users to create and post images right in Facebook and Instagram. The feature helps followers or users in this case to create simple tailored images quickly and therefore contributes to the users’ social media marketing. These AI widgets align with Meta’s plans to increase user interaction on the company’s platforms. Social media engagement holds 65% of the market of visual content marketers, stating that visual content increases engagement. These tools enable the audience to easily generate high-quality sharable visual images without any design background. AI for Instagram Reels: Auto-Dubbing and Lip-Syncing Advancing Meta’s well-known Artificial Intelligence capabilities, Instagram Reels will, in the near future, come equipped with automatic dubbing and lip-syncing features powered by the artificial intelligence. This new feature is likely to ease the work of content creators, especially those looking to elevate their video storytelling with less time dedicated to editing. The feature is not limited to countries with populations of over two billion Instagram users. Instead, this refers to Instagram’s own large user base, which exceeds two billion monthly active users globally. This AI-powered feature will streamline content creation and boost the volume and quality of user-generated content. Ray-Ban Smart Glasses The company also shared the news about the extensions of the undoubted and brightest technology of the — its Ray-Ban Smart Glasses which will become commercially available in late 2024. Enhanced artificial intelligence capabilities will include the glasses with hands-free audio and the ability to provide real-time translation. The company’s vision was making Ray-Ban spectacles more user friendly to help those who wear them with complicated tasks, such as language translation, through the use of artificial intelligence. At Meta Connect 2024, again, the company declared their aim to bring immersive technology to the masses by offering low-priced equipment and advanced AI capabilities. Meta is confident to lead the new era of AR, VR, and AI innovations in products such as the Quest 3S, AI-enhanced Instagram features, and improved Ray-Ban smart glasses. With these processes integrated into our digital lives, users will discover new ways to interact, create, and communicate within virtual worlds.

September 5, 2024
Gamescom 2024: The Future of Gaming is Here, and It’s Bigger Than Ever

This year’s Gamescom 2024 in Cologne, Germany, provided proof of the gaming industry’s astounding growth. Our team was thrilled to have a chance to attend this event, which showcased the latest in gaming and gave us a glimpse into the future of the industry. Gamescom 2024 was a record-breaking conference, with over 335,000 guests from about 120 nations, making it one of the world’s largest and most international gaming gatherings. This year’s showcase had a considerable rise in attendance — nearly 15,000 people over the previous year. Gamescom 2024 introduced new hardware advances used for the next generation of video games. Improvements in CPUs and video cards, particularly from big companies in the industry like AMD and NVIDIA, are pushing the boundaries of what is feasible for games in terms of performance and graphics. For example, NVIDIA introduced the forthcoming GeForce RTX series, which promises unprecedented levels of immersion and realism. Not to be outdone, AMD has introduced a new series of Ryzen processors designed to survive the most extreme gaming settings. These technological advancements are critical as they allow video game developers to create more complex and visually stunning games, particularly for virtual reality. As processing power increases, virtual reality is reaching new heights. We saw numerous VR-capable games at Gamescom that offer players an unparalleled level of immersion. Being a VR/AR development company, we were excited to watch how technology was evolving and what new possibilities it was bringing up. The video game called “Half-Life: Alyx” has set a new standard, and it’s clear that VR is no longer a niche but a growing segment of the gaming market. Gamescom’s format proved its strength, as indicated by the fact that its two days were run in two formats. Gamescom stands out from other games exhibitions or conventions by being both a business and consumer show. This dual format enables the developers to collect feedback on their products immediately. This is especially so when meeting prospective clients during a presentation or when giving a demonstration to gamers, the response elicited is very helpful. Rarely does anyone get a chance to witness the actual implementation and real-world effect of what they have done.

September 2, 2024
How to Use Artificial Intelligence in Creating Content for RPG Games

Introduction The World of Artificial Intelligence (AI) and Its Application in Content Creation for RPG Games Recently, the world of IT technology has been actively filled with various iterations of artificial intelligence. From advanced chatbots that provide technical support to complex algorithms aiding doctors in disease diagnosis, AI’s presence is increasingly felt. In a few years, it might be hard to imagine our daily activities without artificial intelligence, especially in the IT sector. Let’s focus on generative artificial intelligence, such as TensorFlow, PyTorch, and others, which have long held an important place in software development. However, special attention should be given to the application of AI in the video game industry. We see AI being used from voice generation to real-time responses. Admittedly, this area is not yet so developed as to be widely implemented in commercially available games. But the main emphasis I want to make is on the creation and enhancement of game content using AI. In my opinion, this is the most promising and useful direction for game developers. The Lack of Resources in Creating Large and Ambitious RPG Games and How AI Can Be a Solution In the world of indie game development, a field with which I am closely familiar, the scarcity of resources, especially time and money, is always a foremost challenge. While artificial intelligence (AI) cannot yet generate money or add extra hours to the day (heh-heh), it can be the key to effectively addressing some of these issues. Realism here is crucial. We understand that AI cannot write an engaging story or develop unique gameplay mechanics – these aspects remain the domain of humans (yes, game designers and other creators can breathe easy for now). However, where AI can truly excel is in generating various items, enhancing ideas, writing coherent texts, correcting errors, and similar tasks. With such capabilities, AI can significantly boost the productivity of each member of an indie team, freeing up time for more creative and unique tasks, from content generation to quest structuring. What is Artificial Intelligence and How Can it be Used in Game Development For effective use of AI in game development, a deep understanding of its working principles is essential. Artificial intelligence is primarily based on complex mathematical models and algorithms that enable machines to learn, analyze data, and make decisions based on this data. This could be machine learning, where algorithms learn from data over time becoming more accurate and efficient, or deep learning, which uses neural networks to mimic the human brain. Let’s examine the main types of AI Narrative AI (OpenAI ChatGPT, Google BERT): Capable of generating stories, dialogues, and scripts. Suitable for creating the foundations of the game world and dialogues. Analytical AI (IBM Watson, Palantir Technologies): Focuses on data collection and analysis. Used for optimizing game processes and balance. Creative AI (Adobe Photoshop’s Neural Filters, Runway ML): Able to create visual content such as textures, character models, and environments. Generative AI (OpenAI DALL-E, GPT-3 and GPT-4 from OpenAI): Ideal for generating unique names, item descriptions, quest variability, and other content. By understanding the strengths and weaknesses of each type of AI, developers can use them more effectively in their work. For example, using AI to generate original stories or quests can be challenging, but using it for correcting grammatical errors or generating unique names and item descriptions is more realistic and beneficial. This allows content creators to focus on more creative aspects of development, optimizing their time and resources. An Overview of the Characteristics of Large Fantasy RPG Games and Their Content Requirements In large fantasy RPG games, not only gameplay and concept play a pivotal role, but also the richness and variability of content – spells, quests, items, etc. This diversity encourages players to immerse themselves in the game world, sometimes spending hundreds of hours exploring every nook and cranny. The quantity of this content is important, but so is its quality. Imagine, we offer the player a relic named “Great Heart” with over 100 attribute variations – that’s one approach. But if we offer 100 different relics, each with a unique name and 3-4 variations in description, the player’s experience is significantly different. In AAA projects, the quality of content is usually high, with hundreds of thousands of hours invested in creating items, stories, and worlds. However, in the indie sector, the situation is different: there’s a limited number of items, less variability – unless we talk about roguelikes, where world and item generation are used. A typical feature of roguelikes is the randomization of item attributes. However, they rarely offer unique generation of names or descriptions; if they do, it’s more about applying formulas and substitution rules, rather than AI. This opens new possibilities for the use of artificial intelligence – not just as a means of generating random attributes, but also in creating deep, unique stories, characters, and worlds, adding a new dimension to games. Integrating AI for Item Generation: How AI Can Assist in Creating Unique Items (Clothing, Weapons, Consumables). One of the practical examples of using AI is creating variations based on existing criteria. Why do I consider this the best way to utilize AI? Firstly, having written the story of your game world, we can set limits for the AI, providing clear input and output data. This ensures a 100% predictable outcome from AI. Let’s examine this more closely. When talking about the world’s story, I mean a few pages that describe the world, its nature, and rules. It could be fantasy, sci-fi, with examples of names, unique terminology, or characteristic features that help AI understand the mood and specifics of the world. Here is an excerpt from the text I wrote for my game world. The Kingdom of Arteria is an ancient and mysterious realm, shrouded in secrets and imbued with a powerful form of dark magic. For centuries, it has been ruled by Arteon the First, a wise and just monarch whose benevolence has brought peace and prosperity to his…



Let's discuss your ideas

Contact us