Exploring Spatial Computing and Its Impact on Industries

Spatial computing is a fast-growing field that is set to create a new way of interacting with the world around us. This technology has the potential to revolutionize many industries, from healthcare and education to manufacturing and more. The potential is seen by such well-known companies as Apple, Meta, Magic Leap, and others, which work with spatial computing and mixed, augmented, and virtual reality. By 2032, the total value of the spatial computing market will grow to more than $512 billion, compared to $87.5 billion in 2022.

In this article, we will take a closer look at the concept of spatial computing and try to explain how it differs from mixed reality, as well as its potential impact on various industries. 

Rise of Spatial Computing.  Historical Overview

According to Wikipedia, the term “spatial computing” was first coined in 2003, in the eponymous research paper by Simon Greenwold, a former researcher in the Aesthetics and Computation group at the MIT Media Lab and current head of Story As… Simon Greenwald. The original definition of spatial computing is “a human-machine interaction in which the machine retains and manipulates referents to real objects and spaces”.

With the development of immersive technologies, modern spatial computing primarily describes a direct human interaction with technologies and digital content. For example, spatial computing involves the use of gestures, head and eye movements, voice commands and their integration into the digital interface of a device, such as the latest Apple Vision Pro.

As defined by Apple, spatial computing is a technology that seamlessly blends digital content with the real world. For example, this technology is useful for remote work, games, or movies, where a headset user can expand the screen to gigantic dimensions, making home viewing more like a real cinema experience.

Spatial Computing vs. Mixed Reality. Understanding Key Differences

There is a popular opinion that the term “spatial computing” is not so innovative. According to some experts, this technology works on the principle of mixed reality, popularized by Microsoft with the help of Hololens MR glasses. And indeed, according to Vladimir Grygoriev, Qualium Systems tech lead, both mixed reality and spatial computing impose digital objects on the real space, considering the physics of the space.

“In fact, many devices already do the same spatial mapping as Apple does. And what is Apple planning to present, what is the main innovation and the difference? First, they want to add such image quality that a person will not feel the artificiality of it on devices. Meaning, you have a cup standing in front of you, and when being touched, it falls, spills, and breaks. But when you take off your glasses, it does not even exist,” Grygoriev said.

On the other hand, when releasing the newest headset, Apple plans to use “spatial computing” as a collective term for other areas, such as spatial rendering, spatial mapping, spatial interactions, etc. The innovation of Vision Pro is also about its functionality, with the interface allowing you to turn on several applications at the same time.

“Apple will provide an option, that allows you to run a bunch of applications in small windows in your room. It will also give other people access to your space. You can make 5–10 different screens, where various types of content are being sheared. Then you can close some apps and, wearing a headset, go from the dining room to the kitchen while checking your online chat,” Grygoriev said.

Implementing Spatial Computing and Mixed Reality

Spatial computing is used in such areas as

  • 3D Modeling. Due to the fact that spatial computing technology can seamlessly integrate digital objects into real space, a user of an AR/VR headset can design a 3D model of their future project, whether it is a building, a car, a room, etc. With spatial computing, a user has the ability to zoom in and out a digital object, view it from all sides, etc. This gives the user the opportunity to see the future construction in more detail and correct errors that can cause serious financial losses. For example, in this video, an engineer wearing Hololens 2 glasses projects a future car model on his desk.

  • Remote collaboration. With spatial computing and mixed reality, employees who are in different places can collaborate and see each other. It can be either a completely virtual environment (for example, a virtual office) or an MR option, in which the employee can see a digital screen with the image of their colleague or his own digital avatar in XR-glasses, without leaving a physical workplace. One of the interesting cases of remote collaboration through MR is the concept of mixed reality from the Airbus airline company. The company’s employees work with customers on the aircraft’s family cabin design. The concept offers a full recreation of the virtual cabin on portable devices, as well as the possibility of collective work of MR-glasses users on a digital model of the cabin superimposed on the real world.

  • Training and skill development. Mixed reality and spatial computing have found their application for training employees in various fields. The convenience of MR training lies in the fact that the employee acquires practical skills at work with the help of digital instructions that are smoothly superimposed on the workplace. Mixed reality and spatial computing are not only implemented to train doctors and factory workers. For example, mixed reality is used to train military pilots for the F-16, F-18, and F-35 fighter jets. During training from Varjo, the pilot sits in the cockpit with a real control panel. A pilot, while training in MR glasses, sees a real image of himself in the cockpit alongside a virtual environment that reproduces the training ground.

Spatial Computing Technologies. Where and How They’re Making an Impact 

Empowering Medical Professionals: Spatial Computing’s Role

Spatial computing is already finding its application in the field of medicine. This technology allows you to create interactive digital twins of patients, so that doctors can examine the body from any angle and see a better picture of their diagnosis, more accurately select drugs and create a treatment plan. Also, digital 3D projections are actively used both during surgical interventions and during training. 

For example, the Lynx company, in collaboration with the research center INSERM, created a mixed reality program for training medics and conducting surgeries. Thus, surgeons in MR headsets can visualize a patient’s organ they are going to operate on before and during the procedure itself, calculating all possible risks and consequences. The doctor can also add scans of the patient’s real organs and data from their medical record to provide a more realistic experience. During the operation, the doctor in MR glasses is able to monitor the processes in the patient’s body in real time and manipulate digital content using hand gestures.

How Spatial Computing Enhances Architectural Processes

With spatial computing, architects and designers can create interactive presentations. Such presentations can reassure the client in a more efficient way and show them how the final product will look. In this way, it is possible to present the project more transparently and clearly so that a customer pays attention to the design flaws, which will be eliminated in the future.

The development of architectural projects with the help of spatial computing allows you to take into account the nuances of the future building and calculate possible design errors.

For example, the French real estate firm BNP Paribas Group, together with Magic Leap and Vectuel & RF Studio, developed “the POD”, a special capsule with virtual reality glasses,  a client enters into and puts on the glasses. In them, he sees a virtual tour with digital models of the future buildings that can be purchased, as well as a visual tutorial on purchasing real estate.

Spatial Computing’s Role in Modern Manufacturing

In manufacturing, spatial computing is used in several directions, such as virtual training, navigation, remote support, creating a digital double of the supply chain, tracking processes in the chain in real-time, etc. Thanks to spatial computing, an employee receives digital instructions that facilitate his work without leaving the workplace.

The American manufacturing company PBC Linear released an AR training for factory workers using tablets and AR glasses. The main goal of introducing the augmented reality is to reduce the training time of employees from three weeks to three days.

“The first thing we do is we record an operator running through the procedures of the machine. Whether it’s a start-up, tool touch-off, blow-off, or any sort of quality. We’ll have someone standing behind them recording and asking questions. They then take those recordings and those questions up to either their computer to author the instructions, or in front of the machine they’ll put on a HoloLens or Magic Leap and they’ll start creating those instructions, just as the tool maker operator laid out for them. And within just a few hours they’ll have a virtual reality or augmented reality version of that same training,” said Beau Wileman, the Factor of the Future Manager.

Spatial Computing Technologies. Future of Learning in Digital Age

Immersive technologies have been proven to enhance the student’s ability to learn new material and consolidate theoretical skills. According to Arbor XR, students are almost 4 times more emotionally connected to the learning material and 4 times more focused on learning.

With mixed reality and spatial computing, a traditional classroom lesson can be turned into an interesting adventure by visually showing an interactive digital model of the learned subject.

For example, the Titans of Space MR app for the Meta Quest glasses will be useful for those who study astronomy. In this app, the option of virtual tours of the digital universe with interactive models of celestial bodies is available. Students travel on a board of a spaceship and can see, for example, the digital solar system up close.

Spatial Computing Revolutionizing Advertising 

In today’s technology era, marketers and advertisers are increasingly paying attention to XR. It is confirmed that with the help of interactive content, customers become more interested in the product offered. Knowing this, 90% of companies already use or plan to introduce mixed reality in their advertising campaigns.

In October 2022, at the NFL games, Gilette created an MR ad for the stadium with a large digital model of the razor.

Spatial computing continues the development of technological innovations that blur the boundaries between the physical and digital worlds. Like virtual, augmented, and mixed reality, spatial computing is a transformative force that will carry on shaping industries for years to come. Advanced devices like Apple Vision Pro offer users a new way of interacting with digital objects that respond to the physics of the real environment. Therefore, the technologies of spatial computing and mixed reality have come in handy in such areas as manufacturing, architecture, mechanical engineering, education, etc.

Latest Articles

June 2, 2025
Extended Reality in Industry 4.0: Transforming Industrial Processes

Understanding XR in Industry 4.0 Industry 4.0 marks a turning point in making industry systems smarter and more interconnected: it integrates digital and physical technologies like IoT, automation, and AI, into them. And you’ve probably heard about Extended Reality (XR), the umbrella for Virtual Reality, Augmented Reality, and Mixed Reality. It isn’t an add-on. XR is one of the primary technologies making the industry system change possible. XR has made a huge splash in Industry 4.0, and recent research shows how impactful it has become. For example, a 2023 study by Gattullo et al. points out that AR and VR are becoming a must-have in industrial settings. It makes sense — they improve productivity and enhance human-machine interactions (Gattullo et al., 2023). Meanwhile, research by Azuma et al. (2024) focuses on how XR makes workspaces safer and training more effective in industrial environments. One thing is clear: the integration of XR into Industry 4.0 closes the gap between what we imagine in digital simulations and what actually happens in the real world. Companies use XR to work smarter — it tightens up workflows, streamlines training, and improves safety measures. The uniqueness of XR is in its immersive nature. It allows teams to make better decisions, monitor operations with pinpoint accuracy, and effectively collaborate, even if team members are on opposite sides of the planet. XR Applications in Key Industrial Sectors Manufacturing and Production One of the most significant uses of XR in Industry 4.0 is in manufacturing, where it enhances design, production, and quality control processes. Engineers now utilize digital twins, virtual prototypes, and AR-assisted assembly lines, to catch possible defects before production even starts. Research by Mourtzis et al. (2024) shows how effective digital twin models powered by XR are in smart factories: for example, studies reveal that adopting XR-driven digital twins saves design cycle times by up to 40% and greatly speeds up product development. Besides, real-time monitoring with these tools has decreased system downtimes by 25% (Mourtzis et al., 2024). Training and Workforce Development The use of XR in employee training has changed how industrial workers acquire knowledge and grow skills. Hands-on XR-based simulations allow them to practice in realistic settings without any of the risks tied to operating heavy machinery, whereas traditional training methods usually involve lengthy hours, high expenses, and the need to set aside physical equipment, disrupting operations. A study published on ResearchGate titled ‘Immersive Virtual Reality Training in Industrial Settings: Effects on Memory Retention and Learning Outcomes’ offers interesting insights on XR’s use in workforce training. It was carried out by Jan Kubr, Alena Lochmannova, and Petr Horejsi, researchers from the University of West Bohemia in Pilsen, Czech Republic, specializing in industrial engineering and public health. The study focused on fire suppression training to show how different levels of immersion in VR affect training for industrial safety procedures. The findings were astounding. People trained in VR remembered 45% more information compared to those who went through traditional training. VR also led to a 35% jump in task accuracy and cut real-world errors by 50%. On top of that, companies using VR in their training programs noticed that new employees reached full productivity 25% faster. The study uncovered a key insight: while high-immersion VR training improves short-term memory retention and operational efficiency, excessive immersion — for example, using both audio navigation and visual cues at the same time — can overwhelm learners and hurt their ability to absorb information. These results showed how important it is to find the right balance when creating VR training programs to ensure they’re truly effective. XR-based simulations let industrial workers safely engage in realistic and hands-on scenarios without the hazards or costs of operating heavy machinery, changing the way they acquire new skills. Way better than sluggish, costly, and time-consuming traditional training methods that require physical equipment and significant downtime. Maintenance and Remote Assistance XR is also transforming equipment maintenance and troubleshooting. In place of physical manuals, technicians using AR-powered smart glasses can view real-time schematics, follow guided diagnostics, and connect with remote experts, reducing downtime. Recent research by Javier Gonzalez-Argote highlights how significantly AR-assisted maintenance has grown in the automotive industry. The study finds that AR, mostly mediated via portable devices, is widely used in maintenance, evaluation, diagnosis, repair, and inspection processes, improving work performance, productivity, and efficiency. AR-based guidance in product assembly and disassembly has also been found to boost task performance by up to 30%, substantially improving accuracy and lowering human errors. These advancements are streamlining industrial maintenance workflows, reducing downtime and increasing operational efficiency across the board (González-Argote et al., 2024). Industrial IMMERSIVE 2025: Advancing XR in Industry 4.0 At the Industrial IMMERSIVE Week 2025, top industry leaders came together to discuss the latest breakthroughs in XR technology for industrial use. One of the main topics of discussion was XR’s growing impact on workplace safety and immersive training environments. During the event, Kevin O’Donovan, a prominent technology evangelist and co-chair of the Industrial Metaverse & Digital Twin committee at VRARA, interviewed Annie Eaton, a trailblazing XR developer and CEO of Futurus. She shared exciting details about a groundbreaking safety training initiative, saying: “We have created a solution called XR Industrial, which has a collection of safety-themed lessons in VR … anything from hazards identification, like slips, trips, and falls, to pedestrian safety and interaction with mobile work equipment like forklifts or even autonomous vehicles in a manufacturing site.” By letting workers practice handling high-risk scenarios in a risk-free virtual setting, this initiative shows how XR makes workplaces safer. No wonder more companies are beginning to see the value in using such simulations to improve safety across operations and avoid accidents. Rethinking how manufacturing, training, and maintenance are done, extended reality is rapidly becoming necessary for Industry 4.0. The combination of rising academic study and practical experiences, like those shared during Industrial IMMERSIVE 2025, highlights how really strong this technology is. XR will always play a big role in optimizing efficiency, protecting workers, and…

April 29, 2025
Med Tech Standards: Why DICOM is Stuck in the 90s and What Needs to Change

You probably don’t think much about medical scan data. But they’re everywhere. If you’ve got an X-ray or an MRI, your images were almost certainly processed by DICOM (Digital Imaging and Communications in Medicine), the globally accepted standard for storing and sharing medical imaging data like X-rays, MRIs, and CT scans between hospitals, clinics, and research institutions since the late 80s and early 90s. But there’s a problem: while medical technology has made incredible leaps in the last 30 years, DICOM hasn’t kept up. What is DICOM anyway? DICOM still operates in ways that feel more suited to a 1990s environment of local networks and limited computing power. Despite updates, the system doesn’t meet the demands of cloud computing, AI-driven diagnostics, and real-time collaboration. It lacks cloud-native support and rigid file structures, and shows inconsistencies between different manufacturers. If your doctor still hands you a CD with your scan on it in 2025 (!), DICOM is a big part of that story. The DICOM Legacy How DICOM Came to Be When DICOM was developed in the 1980s, the focus was on solving some big problems in medical imaging, and honestly, it did the job brilliantly for its time. The initial idea was to create a universal language for different hardware and software platforms to communicate with each other, sort of like building a shared language for technology. They also had to make sure it was compatible with older devices already in use. At that time, the most practical option was to rely on local networks since cloud-based solutions simply didn’t exist yet. These decisions helped DICOM become the go-to standard, but they also locked it into an outdated framework that’s now tough to update. Why It’s Hard to Change DICOM Medical standards don’t evolve as fast as consumer technology like phones or computers. Changing something like DICOM doesn’t happen overnight. It’s a slow and complicated process muddled by layers of regulatory approvals and opinions from a tangled web or organizations and stakeholders. What’s more, hospitals have decades of patient data tied to these systems, and making big changes that may break compatibility isn’t easy. And to top it all off, device manufacturers have different ways of interpreting and implementing DICOM, so it’s nearly impossible to enforce consistency. The Trouble With Staying Backwards Compatible DICOM’s focus on working perfectly with old systems was smart at the time, but it’s created some long-term problems. Technological advancements have moved on with AI, cloud storage, and tools for real-time diagnostics. They have shown immediately how limited DICOM can be in catching up with these innovations. Also, vendor-specific implementations have created quirks that make devices less compatible with one another than they should be. And don’t even get started on trying to link DICOM with modern healthcare systems like electronic records or telemedicine platforms. It would be like trying to plug a 1980s gadget into a smart technology ecosystem — not impossible, but far from seamless. Why Your CT Scanner and MRI Machine Aren’t Speaking the Same Language Interoperability in medical imaging sounds great in theory — everything just works, no matter the device or manufacturer — however, in practice, things got messy. Some issues sound abstract, but for doctors and hospitals, they mean delays, misinterpretations, and extra burden. So, why don’t devices always play nice? The Problem With “Standards” That Aren’t Very Standard You’d think having a universal standard like DICOM would ensure easy interoperability because everybody follows the same rules. Not exactly. Device manufacturers implement it differently, and this leads to: Private tags. These are proprietary pieces of data that only specific software can understand. If your software doesn’t understand them, you’re out of luck. Missing or vague fields. Some devices leave out crucial metadata or define it differently. File structure issues. Small differences in how data is formatted sometimes make files unreadable. The idea of a universal standard is nice, but the way it’s applied leaves a lot to be desired. Metadata and Tag Interpretation Issues DICOM images contain extensive metadata to describe details like how the patient was positioned during the scan or how the images fit together. But when this metadata isn’t standardized, you end up with metadata and tag interpretation issues. For example, inconsistencies in slice spacing or image order can throw off 3D reconstructions, leaving scans misaligned. As a result, when doctors try to compare scans over time or across different systems, they often have to deal with mismatched or incomplete data. These inconsistencies make what should be straightforward tasks unnecessarily complicated and create challenges for accurate diagnoses and proper patient care. File Structure and Storage Inconsistencies The way images are stored varies so much between devices that it often causes problems. Some scanners save each image slice separately. Others put them together in one file. Then there are slight differences in DICOM implementations that make it difficult to read images on some systems. Compression adds another layer of complexity — it’s not the same across the board. File sizes and levels of quality vary widely. All these mismatches and inconsistencies make everything harder for hospitals and doctors trying to work together. Orientation and Interpretation Issues Medical imaging is incredible, but sometimes working with scans slows things down when time matters most and makes it harder to get accurate insights for patient care. There are several reasons for this. Different Coordinate Systems Sometimes, DICOM permits the use of different coordination systems and causes confusions. For instance, patient-based coordinates relate to the patient’s body, like top-to-bottom (head-to-feet) or side-to-side (left-to-right). Scanner-based coordinates, on the other hand, are based on the imaging device itself. When these systems don’t match up, it creates misalignment issues in multi-modal imaging studies, where scans from different devices need to work together. Slice Ordering Problems Scans like MRIs and CTs are made up of thin cross-sectional images called slices. But not every scanner orders or numbers these slices in the same way. Some slices can be stored from top-to-bottom or bottom-to-top. If the order…

March 24, 2025
VR & MR Headsets: How to Choose the Right One for Your Product

Introduction Virtual and mixed reality headsets are not just cool toys to show off at parties, though they’re definitely good for that. They train surgeons without risking a single patient, build immersive classrooms without ever leaving home, and even help to design something with unparalleled precision. But choosing VR/MR headsets … It’s not as simple as picking what looks sleek or what catches your eye on the shelf. And we get it. The difference between a headset that’s wired, standalone, or capable of merging the real and digital worlds is confusing sometimes. But we’ll break it all down in a way that makes sense. Types of VR Headsets VR and MR headsets have different capabilities. However, choosing the perfect one is less about specs and more about how they fit your needs and what you want to achieve. Here’s the lineup… Wired Headsets Wired headsets like HTC Vive Pro and Oculus Rift S should be connected to a high-performance PC to deliver stunningly detailed visuals and incredibly accurate tracking. Expect razor-sharp visuals that make virtual grass look better than real grass and tracking so on-point, you’d swear it knows what you’re about to do before you do. Wired headsets are best for high-stakes environments like surgical training, designing complex structures, or running realistic simulations for industries like aerospace. However, you’ll need a powerful computer to even get started, and a cable does mean less freedom to move around. Standalone Headsets No strings attached. Literally. Standalone headsets like Oculus Quest Pro, Meta Quest 3, Pico Neo 4, and many more) are lightweight, self-contained, and wireless, so you can jump between work and play with no need for external hardware. They are perfect for on-the-go use, casual gaming, and quick training sessions. From portable training setups to spontaneous VR adventures at home, these headsets are flexible and always ready for action (and by “action”, we mostly mean Zoom calls in VR if we’re being honest). However, standalone headsets may not flex enough for detailed, high-performance applications like ultra-realistic design work or creating highly detailed environments. Mixed Reality (MR) Headsets Mixed reality headsets blur the line between physical and digital worlds. They don’t just whisk you to a virtual reality — they invite the virtual to come hang out in your real one. And this means holograms nested on your desk, live data charts floating in the air, and playing chess with a virtual opponent right at your dining room table. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. MR headsets like HoloLens 2 or Magic Leap 2 shine in hybrid learning environments, AR-powered training, and collaborative work requiring detailed, interactive visuals thanks to their advanced features like hand tracking and spacial awareness. The question isn’t just in what these headsets can do. It’s in how they fit into your reality, your goals, and your imagination. Now, the only question left is… which type is best for your needs? Detailed Headset Comparisons It’s time for us to play matchmaker between you and the headsets that align with your goals and vision. No awkward small talk here, just straight-to-the-point profiles of the top contenders. HTC Vive Pro This is your choice if you demand nothing but the best. With a resolution of 2448 x 2448 pixels per eye, it delivers visuals so sharp and detailed that they bring virtual landscapes to life with stunning clarity. HTC Vive Pro comes with base-station tracking that practically reads your mind, and every movement you make in the real world reflects perfectly in the virtual one. But this kind of performance doesn’t come without requirements. Like any overachiever, it’s got high standards and requires some serious backup. You’ll need a PC beefy enough to bench press an Intel Core i7 and an NVIDIA GeForce RTX 2070. High maintenance is also required, but it’s totally worth it. Best for: High-performance use cases like advanced simulations, surgical training, or projects that demand ultra-realistic visuals and tracking accuracy. Meta Quest 3 Unlilke the HTC Vive Pro, the Meta Quest 3 doesn’t require a tethered PV setup cling. This headset glides between VR and MR like a pro. One minute you’re battling in an entirely virtual world, and the next, you’re tossing virtual sticky notes onto your very real fridge. Meta Quest 3 doesn’t match the ultra-high resolution of the Vive Pro, but its display resolution reaches 2064 x 2208 pixels per eye — and this means sharp and clear visuals that are more than adequate for training sessions, casual games, and other applications. Best for: Portable classrooms, mobile training sessions, or casual VR activities. Magic Leap 2 The Magic Leap 2 sets itself apart not with flashy design, but with seamless hand and eye tracking that precisely follow your movements and the headset that feels like it knows you. This headset is the one you want when you’re blending digital overlays with your real-life interactions. 2048 x 1080 pixels per eye and the 70 degrees diagonal field of view come with a price tag that’s way loftier than its competitors. But remember that visionaries always play on their terms Best for: Interactive lessons, augmented reality showstoppers, or drawing attention at industry conventions with show-stopping demos. HTC Vive XR Elite The HTC Vive XR Elite doesn’t confine itself to one category. It’s built for users who expect both performance and portability in one device. 1920 x 1920 resolution per eye doesn’t make it quite as flashy as the overachiever above, but it makes up for it with adaptability. This headset switches from wired to wireless within moments and keeps up with how you want to work or create. Best for: Flexible setups, easily transitioning between wired and wireless experiences, and managing dynamic workflows. Oculus Quest Pro The Oculus Quest Pro is a devices that lets its capabilities speak for themselves. Its smooth and reliable performance,…



Let's discuss your ideas

Contact us